Diagnostic Accuracy of FebriDx: A Rapid Test to Detect Immune Responses to Viral and Bacterial Upper Respiratory Infections.
Ontology highlight
ABSTRACT: C-reactive protein (CRP) and myxovirus resistance protein A (MxA) are associated with bacterial and viral infections, respectively. We conducted a prospective, multicenter, cross-sectional study of adults and children with febrile upper respiratory tract infections (URIs) to evaluate the diagnostic accuracy of a rapid CRP/MxA immunoassay to identify clinically significant bacterial infection with host response and acute pathogenic viral infection. The reference standard for classifying URI etiology was an algorithm that included throat bacterial culture, upper respiratory PCR for viral and atypical pathogens, procalcitonin, white blood cell count, and bandemia. The algorithm also allowed for physician override. Among 205 patients, 25 (12.2%) were classified as bacterial, 53 (25.9%) as viral, and 127 (62.0%) negative by the reference standard. For bacterial detection, agreement between FebriDx and the reference standard was 91.7%, with FebriDx having a sensitivity of 80% (95% CI: 59-93%), specificity of 93% (89-97%), positive predictive value (PPV) of 63% (45-79%), and a negative predictive value (NPV) of 97% (94-99%). For viral detection, agreement was 84%, with a sensitivity of 87% (75-95%), specificity of 83% (76-89%), PPV of 64% (63-75%), and NPV of 95% (90-98%). FebriDx may help to identify clinically significant immune responses associated with bacterial and viral URIs that are more likely to require clinical management or therapeutic intervention, and has potential to assist with antibiotic stewardship.
Project description:BackgroundThe National Institute for Health and Care Excellence (NICE) have called for research into the role of biomarkers, and specifically procalcitonin (PCT), for the early diagnosis of serious bacterial infections (SBI) in children. The aim of this study was to compare the diagnostic test accuracy of C-reactive protein (CRP) and PCT for the diagnosis of SBI in children.MethodsData was collected prospectively from four UK emergency departments (ED) between November 2017 and June 2019. Consecutive children under 18 years of age with fever and features of possible sepsis and/or meningitis were eligible for inclusion. The index tests were PCT and CRP and the reference standard was the confirmation of SBI.Results213 children were included in the final analysis. 116 participants (54.5%) were male, and the median age was 2 years, 9 months. Parenteral antibiotics were given to 100 (46.9%), three (1.4%) were admitted to a paediatric intensive care unit and there were no deaths. There were ten (4.7%) confirmed SBI. The area under the curve for PCT and CRP for the detection of SBI was identical at 0.70.ConclusionsThere was no difference in the performance of PCT and CRP for the recognition of SBI in this cohort.Trial registrationRegistered at https://www.clinicaltrials.gov (trial registration: NCT03378258 ) on the 19th of December 2017.
Project description:The only licensed dengue vaccine, Dengvaxia®, increases risk of severe dengue when given to individuals without prior dengue virus (DENV) infection but is protective against future disease in those with prior DENV immunity. The World Health Organization has recommended using rapid diagnostic tests (RDT) to determine history of prior DENV infection and suitability for vaccination. Dengue experts recommend that these assays be highly specific (≥98%) to avoid erroneously vaccinating individuals without prior DENV infection, as well as be sensitive enough (≥95%) to detect individuals with a single prior DENV infection. We evaluated one existing and two newly developed anti-flavivirus RDTs using samples collected >6 months post-infection from individuals in non-endemic and DENV and ZIKV endemic areas. We first evaluated the IgG component of the SD BIOLINE Dengue IgG/IgM RDT, which was developed to assist in confirming acute/recent DENV infections (n=93 samples). When evaluated following the manufacturer's instructions, the SD BIOLINE Dengue RDT had 100% specificity for both non-endemic and endemic samples but low sensitivity for detecting DENV seropositivity (0% non-endemic, 41% endemic). Sensitivity increased (53% non-endemic, 98% endemic) when tests were allowed to run beyond manufacturer recommendations (0.5 up to 3 hours), but specificity decreased in endemic samples (36%). When tests were evaluated using a quantitative reader, optimal specificity could be achieved (≥98%) while still retaining sensitivity at earlier timepoints in non-endemic (44-88%) and endemic samples (31-55%). We next evaluated novel dengue and Zika RDTs developed by Excivion to detect prior DENV or ZIKV infections and reduce cross-flavivirus reactivity (n=207 samples). When evaluated visually, the Excivion Dengue RDT had sensitivity and specificity values of 79%, but when evaluated with a quantitative reader, optimal specificity could be achieved (≥98%) while still maintaining moderate sensitivity (48-75%). The Excivion Zika RDT had high specificity (>98%) and sensitivity (>93%) when evaluated quantitatively, suggesting it may be used alongside dengue RDTs to minimize misclassification due to cross-reactivity. Our findings demonstrate the potential of RDTs to be used for dengue pre-vaccination screening to reduce vaccine-induced priming for severe dengue and show how assay design adaptations as well quantitative evaluation can further improve RDTs for this purpose.
Project description:Respiratory infectious diseases are mainly caused by viruses or bacteria that often interact with one another. Although their presence is a prerequisite for subsequent infections, viruses and bacteria may be present in the nasopharynx without causing any respiratory symptoms. The upper respiratory tract hosts a vast range of commensals and potential pathogenic bacteria, which form a complex microbial community. This community is assumed to be constantly subject to synergistic and competitive interspecies interactions. Disturbances in the equilibrium, for instance due to the acquisition of new bacteria or viruses, may lead to overgrowth and invasion. A better understanding of the dynamics between commensals and pathogens in the upper respiratory tract may provide better insight into the pathogenesis of respiratory diseases. Here we review the current knowledge regarding specific bacterial-bacterial and viral-bacterial interactions that occur in the upper respiratory niche, and discuss mechanisms by which these interactions might be mediated. Finally, we propose a theoretical model to summarize and illustrate these mechanisms.
Project description:AimsTo validate the diagnostic accuracy of the Augurix SARS-CoV-2 IgM/IgG rapid immunoassay diagnostic test (RDT) for COVID-19.MethodsIn this unmatched 1:1 case-control study, blood samples from 46 real-time RT-PCR-confirmed SARS-CoV-2 hospitalized cases and 45 healthy donors (negative controls) were studied. Diagnostic accuracy of the IgG RDT was assessed against both an in-house recombinant spike-expressing immunofluorescence assay (rIFA), as an established reference method (primary endpoint), and the Euroimmun SARS-CoV-2 IgG enzyme-linked immunosorbent assays (ELISA) (secondary endpoint).ResultsCOVID-19 patients were more likely to be male (61% vs 20%; P = .0001) and older (median 66 vs 47 years old; P < .001) than controls. Whole blood IgG-RDT results showed 86% and 93% overall Kendall concordance with rIFA and IgG ELISA, respectively. IgG RDT performances were similar between plasma and whole blood. Overall, RDT sensitivity was 88% (95% confidence interval [95%CI]: 70-96), specificity 98% (95%CI: 90-100), PPV 97% (95%CI: 80-100) and NPV 94% (95%CI: 84-98). The IgG-RDT carried out from 0 to 6 days, 7 to 14 days and > 14 days after the SARS-CoV-2 RT-PCR test displayed 30%, 73% and 100% positivity rates in the COVID-19 group, respectively. When considering samples taken >14 days after RT-PCR diagnosis, NPV was 100% (95%CI:90-100), and PPV was 100% (95%CI:72-100).ConclusionsThe Augurix IgG-RDT done in whole blood displays a high diagnostic accuracy for SARS-CoV-2 IgG in high COVID-19 prevalence settings, where its use could be considered in the absence of routine diagnostic serology facilities.
Project description:ImportanceBacterial and viral causes of acute respiratory illness (ARI) are difficult to clinically distinguish, resulting in the inappropriate use of antibacterial therapy. The use of a host gene expression-based test that is able to discriminate bacterial from viral infection in less than 1 hour may improve care and antimicrobial stewardship.ObjectiveTo validate the host response bacterial/viral (HR-B/V) test and assess its ability to accurately differentiate bacterial from viral infection among patients with ARI.Design, setting, and participantsThis prospective multicenter diagnostic study enrolled 755 children and adults with febrile ARI of 7 or fewer days' duration from 10 US emergency departments. Participants were enrolled from October 3, 2014, to September 1, 2019, followed by additional enrollment of patients with COVID-19 from March 20 to December 3, 2020. Clinical adjudication of enrolled participants identified 616 individuals as having bacterial or viral infection. The primary analysis cohort included 334 participants with high-confidence reference adjudications (based on adjudicator concordance and the presence of an identified pathogen confirmed by microbiological testing). A secondary analysis of the entire cohort of 616 participants included cases with low-confidence reference adjudications (based on adjudicator discordance or the absence of an identified pathogen in microbiological testing). Thirty-three participants with COVID-19 were included post hoc.InterventionsThe HR-B/V test quantified the expression of 45 host messenger RNAs in approximately 45 minutes to derive a probability of bacterial infection.Main outcomes and measuresPerformance characteristics for the HR-B/V test compared with clinical adjudication were reported as either bacterial or viral infection or categorized into 4 likelihood groups (viral very likely [probability score <0.19], viral likely [probability score of 0.19-0.40], bacterial likely [probability score of 0.41-0.73], and bacterial very likely [probability score >0.73]) and compared with procalcitonin measurement.ResultsAmong 755 enrolled participants, the median age was 26 years (IQR, 16-52 years); 360 participants (47.7%) were female, and 395 (52.3%) were male. A total of 13 participants (1.7%) were American Indian, 13 (1.7%) were Asian, 368 (48.7%) were Black, 131 (17.4%) were Hispanic, 3 (0.4%) were Native Hawaiian or Pacific Islander, 297 (39.3%) were White, and 60 (7.9%) were of unspecified race and/or ethnicity. In the primary analysis involving 334 participants, the HR-B/V test had sensitivity of 89.8% (95% CI, 77.8%-96.2%), specificity of 82.1% (95% CI, 77.4%-86.6%), and a negative predictive value (NPV) of 97.9% (95% CI, 95.3%-99.1%) for bacterial infection. In comparison, the sensitivity of procalcitonin measurement was 28.6% (95% CI, 16.2%-40.9%; P < .001), the specificity was 87.0% (95% CI, 82.7%-90.7%; P = .006), and the NPV was 87.6% (95% CI, 85.5%-89.5%; P < .001). When stratified into likelihood groups, the HR-B/V test had an NPV of 98.9% (95% CI, 96.1%-100%) for bacterial infection in the viral very likely group and a positive predictive value of 63.4% (95% CI, 47.2%-77.9%) for bacterial infection in the bacterial very likely group. The HR-B/V test correctly identified 30 of 33 participants (90.9%) with acute COVID-19 as having a viral infection.Conclusions and relevanceIn this study, the HR-B/V test accurately discriminated bacterial from viral infection among patients with febrile ARI and was superior to procalcitonin measurement. The findings suggest that an accurate point-of-need host response test with high NPV may offer an opportunity to improve antibiotic stewardship and patient outcomes.
Project description:OBJECTIVE: The aim of this study was to estimate the rate of bacterial superinfection in patients with URTI by using on-site determination of C-reactive protein (CRP). DESIGN: A prospective cohort study. SETTING: A total of 30 primary care practices. SUBJECTS: Patients with URTI. INTERVENTION: The CRP value was determined at the first consultation and at a follow-up within 3-5 days. CRP values of 30 units (mg) or higher were considered to be an indication of bacterial involvement. MAIN OUTCOME MEASURES: CRP values during follow-up and duration of illness. RESULTS: Among the 506 patients included, 73.1% exhibited a CRP value below the defined limit at their first visit and were considered to suffer from URTI of viral origin. The rate of subsequent bacterial superinfection was 8.1%. Compared with patients suffering from URTI of bacterial or viral origin the duration of illness in patients with bacterial superinfection was significantly longer. CONCLUSION: During follow-up of patients with URTI, the prevalence of bacterial superinfection detected by using a near patient CRP determination is surprisingly low. This result should help to reduce the prescription rate of antibiotics in primary care.
Project description:Human respiratory syncytial virus (RSV) is one of the most common viruses infecting the respiratory tracts of infants. The rapid and sensitive detection of RSV is important to minimize the incidence of infection. In this study, novel monoclonal antibodies (mAbs; B11A5 and E8A11) against RSV nucleoprotein (NP) were developed and applied to develop a rapid fluorescent immunochromatographic strip test (FICT), employing europium nanoparticles as the fluorescent material. For the FICT, the limits of detection of the antigen and virus were 1.25 µg/mL and 4.23 × 10⁶ TCID50/mL, respectively, corresponding to 4.75 × 10⁶ ± 5.8 ×10⁵ (mean ± SD) RNA copy numbers per reaction mixture for RSV NP. A clinical study revealed a sensitivity of 90% (18/20) and specificity of 98.18% (108/110) for RSV detection when comparing the performance to that of reverse transcription polymerase chain reaction (RT-PCR), representing a 15% improvement in sensitivity over the SD Bioline rapid kit. This newly developed FICT could be a useful tool for the rapid diagnosis of RSV infection.
Project description:Early diagnosis is important for the clinical management of diseases caused by dengue virus (DENV) infections. We investigated the performance of three commercially available DENV nonstructural protein 1 (NS1) rapid diagnostic tests (RDTs) using 173 acute-phase sera collected from dengue fever-suspected patients during the 2012-2013 DENV outbreak in Taiwan. The results of the NS1 RDTs were compared with those of qRT-PCR to calculate the sensitivity and specificity of the NS1 RDTs. The anti-DENV IgM and IgG RDT results were included to increase the probability of detecting acute DENV infection. The anti-DENV IgM/IgG RDT results were also compared with those of IgM/IgG captured ELISA. The sera from DENV qRT-PCR-positive patients were subjected to NS1 RDTs, as well as IgM/IgG captured ELISA. These results suggested that there was no significant difference in the sensitivities of the three commercially available DNEV NS1 RDTs; the SD NS1 RDT results showed the highest agreement with the qRT-PCR reference results, followed in order by the Bio-Rad and CTK NS1 RDT results when the specificity was considered. Inclusion of the IgM or IgG RDT results increased the likelihood of diagnosing either a primary or secondary DENV infection. NS1 RDTs were more sensitive for the detection of primary infections than secondary infections, related to DENV viremia levels determined by qRT-PCR. These results suggested that anti-DENV antibodies reduced the sensitivity of NS1 rapid tests. We also analyzed the sensitivity for the detection of different DENV serotypes, and the results suggested that the NS1 RDTs used in this study were valuable for rapid screening of acute DENV infection with DENV-1, DENV-2 and DENV-3. Our results suggest that the NS1 RDT is a good alternative to qRT-PCR analysis for timely dengue disease management and prevention in dengue-endemic regions where medical resources are lacking or during large dengue outbreaks. However, the relatively low sensitivity for DENV-4 might miss the detection of DENV-4-infected cases.
Project description:ImportanceBecause clinical features do not reliably distinguish bacterial from viral infection, many children worldwide receive unnecessary antibiotic treatment, while bacterial infection is missed in others.ObjectiveTo identify a blood RNA expression signature that distinguishes bacterial from viral infection in febrile children.Design, setting, and participantsFebrile children presenting to participating hospitals in the United Kingdom, Spain, the Netherlands, and the United States between 2009-2013 were prospectively recruited, comprising a discovery group and validation group. Each group was classified after microbiological investigation as having definite bacterial infection, definite viral infection, or indeterminate infection. RNA expression signatures distinguishing definite bacterial from viral infection were identified in the discovery group and diagnostic performance assessed in the validation group. Additional validation was undertaken in separate studies of children with meningococcal disease (n = 24) and inflammatory diseases (n = 48) and on published gene expression datasets.ExposuresA 2-transcript RNA expression signature distinguishing bacterial infection from viral infection was evaluated against clinical and microbiological diagnosis.Main outcomes and measuresDefinite bacterial and viral infection was confirmed by culture or molecular detection of the pathogens. Performance of the RNA signature was evaluated in the definite bacterial and viral group and in the indeterminate infection group.ResultsThe discovery group of 240 children (median age, 19 months; 62% male) included 52 with definite bacterial infection, of whom 36 (69%) required intensive care, and 92 with definite viral infection, of whom 32 (35%) required intensive care. Ninety-six children had indeterminate infection. Analysis of RNA expression data identified a 38-transcript signature distinguishing bacterial from viral infection. A smaller (2-transcript) signature (FAM89A and IFI44L) was identified by removing highly correlated transcripts. When this 2-transcript signature was implemented as a disease risk score in the validation group (130 children, with 23 definite bacterial, 28 definite viral, and 79 indeterminate infections; median age, 17 months; 57% male), all 23 patients with microbiologically confirmed definite bacterial infection were classified as bacterial (sensitivity, 100% [95% CI, 100%-100%]) and 27 of 28 patients with definite viral infection were classified as viral (specificity, 96.4% [95% CI, 89.3%-100%]). When applied to additional validation datasets from patients with meningococcal and inflammatory diseases, bacterial infection was identified with a sensitivity of 91.7% (95% CI, 79.2%-100%) and 90.0% (95% CI, 70.0%-100%), respectively, and with specificity of 96.0% (95% CI, 88.0%-100%) and 95.8% (95% CI, 89.6%-100%). Of the children in the indeterminate groups, 46.3% (63/136) were classified as having bacterial infection, although 94.9% (129/136) received antibiotic treatment.Conclusions and relevanceThis study provides preliminary data regarding test accuracy of a 2-transcript host RNA signature discriminating bacterial from viral infection in febrile children. Further studies are needed in diverse groups of patients to assess accuracy and clinical utility of this test in different clinical settings.
Project description:BackgroundEgypt was among the first 10 countries in Africa that experienced COVID-19 cases. The sudden surge in the number of cases is overwhelming the capacity of the national healthcare system, particularly in developing countries. Central to the containment of the ongoing pandemic is the availability of rapid and accurate diagnostic tests that could pinpoint patients at early disease stages. In the current study, we aimed to (1) Evaluate the diagnostic performance of the rapid antigen test (RAT) "Standard™ Q COVID-19 Ag" against reverse transcriptase quantitative real-time PCR (RT-qPCR) in eighty-three swabs collected from COVID-19 suspected individuals showing various demographic features, clinical and radiological findings. (2) Test whether measuring laboratory parameters in participant's blood would enhance the predictive accuracy of RAT. (3) Identify the most important features that determine the results of both RAT and RT-qPCR.MethodsDiagnostic measurements (e.g. sensitivity, specificity, etc.) and receiver operating characteristic curve were used to assess the clinical performance of "Standard™ Q COVID-19 Ag". We used the support vector machine (SVM) model to investigate whether measuring laboratory indices would enhance the accuracy of RAT. Moreover, a random forest classification model was used to determine the most important determinants of the results of RAT and RT-qPCR for COVID-19 diagnosis.ResultsThe sensitivity, specificity, and accuracy of RAT were 78.2, 64.2, and 75.9%, respectively. Samples with high viral load and those that were collected within one-week post-symptoms showed the highest sensitivity and accuracy. The SVM modeling showed that measuring laboratory indices did not enhance the predictive accuracy of RAT.Conclusion"Standard™ Q COVID-19 Ag" should not be used alone for COVID-19 diagnosis due to its low diagnostic performance relative to the RT-qPCR. RAT is best used at the early disease stage and in patients with high viral load.