Unknown

Dataset Information

0

Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider.


ABSTRACT: The evolutionary history of Antarctic organisms is becoming increasingly important to understand and manage population trajectories under rapid environmental change. The Antarctic sea spider Nymphon australe, with an apparently large population size compared with other sea spider species, is an ideal target to look for molecular signatures of past climatic events. We analysed mitochondrial DNA of specimens collected from the Antarctic continent and two Antarctic islands (AI) to infer past population processes and understand current genetic structure. Demographic history analyses suggest populations survived in refugia during the Last Glacial Maximum. The high genetic diversity found in the Antarctic Peninsula and East Antarctic (EA) seems related to multiple demographic contraction-expansion events associated with deep-sea refugia, while the low genetic diversity in the Weddell Sea points to a more recent expansion from a shelf refugium. We suggest the genetic structure of N. australe from AI reflects recent colonization from the continent. At a local level, EA populations reveal generally low genetic differentiation, geographically and bathymetrically, suggesting limited restrictions to dispersal. Results highlight regional differences in demographic histories and how these relate to the variation in intensity of glaciation-deglaciation events around Antarctica, critical for the study of local evolutionary processes. These are valuable data for understanding the remarkable success of Antarctic pycnogonids, and how environmental changes have shaped the evolution and diversification of Southern Ocean benthic biodiversity.

SUBMITTER: Soler-Membrives A 

PROVIDER: S-EPMC5666255 | biostudies-literature | 2017 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider.

Soler-Membrives Anna A   Linse Katrin K   Miller Karen J KJ   Arango Claudia P CP  

Royal Society open science 20171018 10


The evolutionary history of Antarctic organisms is becoming increasingly important to understand and manage population trajectories under rapid environmental change. The Antarctic sea spider <i>Nymphon australe</i>, with an apparently large population size compared with other sea spider species, is an ideal target to look for molecular signatures of past climatic events. We analysed mitochondrial DNA of specimens collected from the Antarctic continent and two Antarctic islands (AI) to infer past  ...[more]

Similar Datasets

| S-EPMC6976697 | biostudies-literature
| S-EPMC2651250 | biostudies-literature
| S-EPMC3479616 | biostudies-literature
| S-EPMC8525082 | biostudies-literature
| S-EPMC5472753 | biostudies-literature
| S-EPMC4217469 | biostudies-literature
| S-EPMC6953680 | biostudies-literature
| S-EPMC8668817 | biostudies-literature
| S-EPMC5972710 | biostudies-literature
| S-EPMC9804564 | biostudies-literature