Real-time Acute Stress Facilitates Allocentric Spatial Processing in a Virtual Fire Disaster.
Ontology highlight
ABSTRACT: Prior studies have shown that spatial cognition is influenced by stress prior to task. The current study investigated the effects of real-time acute stress on allocentric and egocentric spatial processing. A virtual reality-based spatial reference rule learning (SRRL) task was designed in which participants were instructed to make a location selection by walking to one of three poles situated around a tower. A selection was reinforced by either an egocentric spatial reference rule (leftmost or rightmost pole relative to participant) or an allocentric spatial reference rule (nearest or farthest pole relative to the tower). In Experiment 1, 32 participants (16 males, 16 females; aged from 18 to 27) performed a SRRL task in a normal virtual reality environment (VRE). The hit rates and rule acquisition revealed no difference between allocentric and egocentric spatial reference rule learning. In Experiment 2, 64 participants (32 males, 34 females; aged from 19 to 30) performed the SRRL task in both a low-stress VRE (a mini virtual arena) and a high-stress VRE (mini virtual arena with a fire disaster). Allocentric references facilitated learning in the high-stressful VRE. The results suggested that acute stress facilitate allocentric spatial processing.
SUBMITTER: Cao Z
PROVIDER: S-EPMC5668298 | biostudies-literature | 2017 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA