Unknown

Dataset Information

0

Towards visible soliton microcomb generation.


ABSTRACT: Frequency combs have applications that extend from the ultra-violet into the mid-infrared bands. Microcombs, a miniature and often semiconductor-chip-based device, can potentially access most of these applications, but are currently more limited in spectral reach. Here, we demonstrate mode-locked silica microcombs with emission near the edge of the visible spectrum. By using both geometrical and mode-hybridization dispersion control, devices are engineered for soliton generation while also maintaining optical Q factors as high as 80 million. Electronics-bandwidth-compatible (20?GHz) soliton mode locking is achieved with low pumping powers (parametric oscillation threshold powers as low as 5.4?mW). These are the shortest wavelength soliton microcombs demonstrated to date and could be used in miniature optical clocks. The results should also extend to visible and potentially ultra-violet bands.

SUBMITTER: Lee SH 

PROVIDER: S-EPMC5670225 | biostudies-literature | 2017 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications


Frequency combs have applications that extend from the ultra-violet into the mid-infrared bands. Microcombs, a miniature and often semiconductor-chip-based device, can potentially access most of these applications, but are currently more limited in spectral reach. Here, we demonstrate mode-locked silica microcombs with emission near the edge of the visible spectrum. By using both geometrical and mode-hybridization dispersion control, devices are engineered for soliton generation while also maint  ...[more]

Similar Datasets

| S-EPMC8440561 | biostudies-literature
| S-EPMC6368592 | biostudies-literature
| S-EPMC5376647 | biostudies-literature
| S-EPMC7813855 | biostudies-literature
| S-EPMC8671399 | biostudies-literature
| S-EPMC6969110 | biostudies-literature
| S-EPMC6538660 | biostudies-literature
| S-EPMC3839030 | biostudies-literature
| S-EPMC8770478 | biostudies-literature
| S-EPMC8917225 | biostudies-literature