Ontology highlight
ABSTRACT: Background
The genomic diversity of different species within the genus Lactococcus and the relationships between genomic differentiation and environmental factors remain unclear. In this study, type isolates of ten Lactococcus species/subspecies were sequenced to assess their genomic characteristics, metabolic diversity, and phylogenetic relationships.Results
The total genome sizes varied between 1.99 (Lactococcus plantarum) and 2.46 megabases (Mb; L. lactis subsp. lactis), and the G + C content ranged from 34.81 (L. lactis subsp. hordniae) to 39.67% (L. raffinolactis) with an average value of 37.02%. Analysis of genome dynamics indicated that the genus Lactococcus has an open pan-genome, while the core genome size decreased with sequential addition at the genus and species group levels. A phylogenetic dendrogram based on the concatenated amino acid sequences of 643 core genes was largely consistent with the phylogenetic tree obtained by 16S ribosomal RNA (rRNA) genes, but it provided a more robust phylogenetic resolution than the 16S rRNA gene-based analysis.Conclusions
Comparative genomics indicated that species in the genus Lactococcus had high degrees of diversity in genome size, gene content, and carbohydrate metabolism. This may be important for the specific adaptations that allow different Lactococcus species to survive in different environments. These results provide a quantitative basis for understanding the genomic and metabolic diversity within the genus Lactococcus, laying the foundation for future studies on taxonomy and functional genomics.
SUBMITTER: Yu J
PROVIDER: S-EPMC5670709 | biostudies-literature |
REPOSITORIES: biostudies-literature