Unknown

Dataset Information

0

Degeneration of the osteocyte network in the C57BL/6 mouse model of aging.


ABSTRACT: Age-related bone loss and associated fracture risk are major problems in musculoskeletal health. Osteocytes have emerged as key regulators of bone mass and as a therapeutic target for preventing bone loss. As aging is associated with changes in the osteocyte lacunocanalicular system, we focused on the responsible cellular mechanisms in osteocytes. Bone phenotypic analysis was performed in young-(5mo) and aged-(22mo) C57BL/6 mice and changes in bone structure/geometry correlated with alterations in osteocyte parameters determined using novel multiplexed-3D-confocal imaging techniques. Age-related bone changes analogous to those in humans were observed, including increased cortical diameter, decreased cortical thickness, reduced trabecular BV/TV and cortical porosities. This was associated with a dramatic reduction in osteocyte dendrite number and cell density, particularly in females, where osteocyte dendricity decreased linearly from 5, 12, 18 to 22mo and correlated significantly with cortical bone parameters. Reduced dendricity preceded decreased osteocyte number, suggesting dendrite loss may trigger loss of viability. Age-related degeneration of osteocyte networks may impair bone anabolic responses to loading and gender differences in osteocyte cell body and lacunar fluid volumes we observed in aged mice may lead to gender-related differences in mechanosensitivity. Therapies to preserve osteocyte dendricity and viability may be beneficial for bone health in aging.

SUBMITTER: Tiede-Lewis LM 

PROVIDER: S-EPMC5680562 | biostudies-literature | 2017 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Degeneration of the osteocyte network in the C57BL/6 mouse model of aging.

Tiede-Lewis LeAnn M LM   Xie Yixia Y   Hulbert Molly A MA   Campos Richard R   Dallas Mark R MR   Dusevich Vladimir V   Bonewald Lynda F LF   Dallas Sarah L SL  

Aging 20171001 10


Age-related bone loss and associated fracture risk are major problems in musculoskeletal health. Osteocytes have emerged as key regulators of bone mass and as a therapeutic target for preventing bone loss. As aging is associated with changes in the osteocyte lacunocanalicular system, we focused on the responsible cellular mechanisms in osteocytes. Bone phenotypic analysis was performed in young-(5mo) and aged-(22mo) C57BL/6 mice and changes in bone structure/geometry correlated with alterations  ...[more]

Similar Datasets

| S-EPMC7443125 | biostudies-literature
| S-EPMC10984484 | biostudies-literature
| S-EPMC8033717 | biostudies-literature
| S-EPMC10034037 | biostudies-literature
| S-EPMC2174624 | biostudies-literature
| S-EPMC7064560 | biostudies-literature
| S-EPMC7387425 | biostudies-literature
| S-EPMC3613842 | biostudies-other
| S-EPMC2674195 | biostudies-other
| S-EPMC7460847 | biostudies-literature