Ontology highlight
ABSTRACT: Statement of significance
The applicability of FDA-approved biodegradable aliphatic polyesters has been significantly restricted because they are hydrophobic and lack functionalities. Recently zwitterionic polymers have emerged as promising hydrophilic biomaterials, but most of the reported zwitterionic polymers are non-biodegradable. This study reports a novel aliphatic polyester-based zwitterionic polymer and the corresponding polymer-drug conjugate. Their aliphatic polyester and zwitterionic components provide them with high enzymatic degradability and low nonspecific interactions with biomolecules, respectively. While the zwitterionic polymer did not show noticeable cytotoxicity, the corresponding polymer-anticancer drug conjugate exhibited acid-sensitive sustained drug release, remarkable effectiveness in killing cancer cells, as well as the ready cellular internalization. This work lays a foundation for the further development of synthetic biodegradable zwitterionic polymer-based materials which potentially may have broad and significant biomedical applications.
SUBMITTER: Sun H
PROVIDER: S-EPMC5682198 | biostudies-literature | 2017 Dec
REPOSITORIES: biostudies-literature
Acta biomaterialia 20171010
A fully biodegradable zwitterionic polymer and the corresponding conjugate with paclitaxel (PTX) were synthesized as promising biomaterials. Allyl-functionalized polylactide (PLA) was employed as the precursor of polymer backbones. UV-induced thiol-ene reaction was conducted to conjugate thiol-functionalized sulfobetaine (SB) with the PLA-based backbone. The resulting zwitterionic polymer did not exhibit considerable cytotoxicity. A polymer-drug conjugate was also obtained by thiol-ene reaction ...[more]