Unknown

Dataset Information

0

Contrasting runoff trends between dry and wet parts of eastern Tibetan Plateau.


ABSTRACT: As the "Asian Water Tower", the Tibetan Plateau (TP) provides water resources for more than 1.4 billion people, but suffers from climatic and environmental changes, followed by the changes in water balance components. We used state-of-the-art satellite-based products to estimate spatial and temporal variations and trends in annual precipitation, evapotranspiration and total water storage change across eastern TP, which were then used to reconstruct an annual runoff variability series for 2003-2014. The basin-scale reconstructed streamflow variability matched well with gauge observations for five large rivers. Annual runoff increased strongly in dry part because of increases in precipitation, but decreased in wet part because of decreases in precipitation, aggravated by noticeable increases in evapotranspiration in the north of wet part. Although precipitation primarily governed temporal-spatial pattern of runoff, total water storage change contributed greatly to runoff variation in regions with wide-spread permanent snow/ice or permafrost. Our study indicates that the contrasting runoff trends between the dry and wet parts of eastern TP requires a change in water security strategy, and attention should be paid to the negative water resources impacts detected for southwestern part which has undergone vast glacier retreat and decreasing precipitation.

SUBMITTER: Wang Y 

PROVIDER: S-EPMC5684371 | biostudies-literature | 2017 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Contrasting runoff trends between dry and wet parts of eastern Tibetan Plateau.

Wang Yuanyuan Y   Zhang Yongqiang Y   Chiew Francis H S FHS   McVicar Tim R TR   Zhang Lu L   Li Hongxia H   Qin Guanghua G  

Scientific reports 20171113 1


As the "Asian Water Tower", the Tibetan Plateau (TP) provides water resources for more than 1.4 billion people, but suffers from climatic and environmental changes, followed by the changes in water balance components. We used state-of-the-art satellite-based products to estimate spatial and temporal variations and trends in annual precipitation, evapotranspiration and total water storage change across eastern TP, which were then used to reconstruct an annual runoff variability series for 2003-20  ...[more]

Similar Datasets

| S-EPMC6141583 | biostudies-literature
| S-EPMC11246465 | biostudies-literature
| S-EPMC9083225 | biostudies-literature
| S-EPMC9889656 | biostudies-literature
| S-EPMC5823382 | biostudies-literature
| S-EPMC5153633 | biostudies-literature
| S-EPMC5506045 | biostudies-literature
| S-EPMC6266106 | biostudies-literature
| S-EPMC7202599 | biostudies-literature
| S-EPMC4676011 | biostudies-other