Shared atypical default mode and salience network functional connectivity between autism and schizophrenia.
Ontology highlight
ABSTRACT: Schizophrenia and autism spectrum disorder (ASD) are two prevalent neurodevelopmental disorders sharing some similar genetic basis and clinical features. The extent to which they share common neural substrates remains unclear. Resting-state fMRI data were collected from 35 drug-naïve adolescent participants with first-episode schizophrenia (15.6?±?1.8 years old) and 31 healthy controls (15.4?±?1.6 years old). Data from 22 participants with ASD (13.1?±?3.1 years old) and 21 healthy controls (12.9?±?2.9 years old) were downloaded from the Autism Brain Imaging Data Exchange. Resting-state functional networks were constructed using predefined regions of interest. Multivariate pattern analysis combined with multi-task regression feature selection methods were conducted in two datasets separately. Classification between individuals with disorders and controls was achieved with high accuracy (schizophrenia dataset: accuracy?=?83%; ASD dataset: accuracy?=?80%). Shared atypical brain connections contributing to classification were mostly present in the default mode network (DMN) and salience network (SN). These functional connections were further related to severity of social deficits in ASD (p?=?0.002). Distinct atypical connections were also more related to the DMN and SN, but showed different atypical connectivity patterns between the two disorders. These results suggest some common neural mechanisms contributing to schizophrenia and ASD, and may aid in understanding the pathology of these two neurodevelopmental disorders. Autism Res 2017, 10: 1776-1786. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY:Autism spectrum disorder (ASD) and schizophrenia are two common neurodevelopmental disorders which share several genetic and behavioral features. The present study identified common neural mechanisms contributing to ASD and schizophrenia using resting-state functional MRI data. The results may help to understand the pathology of these two neurodevelopmental disorders.
SUBMITTER: Chen H
PROVIDER: S-EPMC5685899 | biostudies-literature | 2017 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA