Corticotropinoma as a Component of Carney Complex.
Ontology highlight
ABSTRACT: Known germline gene abnormalities cause one-fifth of the pituitary adenomas in children and adolescents, but, in contrast with other pituitary tumor types, the genetic causes of corticotropinomas are largely unknown. In this study, we report a case of Cushing disease (CD) due to a loss-of-function mutation in PRKAR1A, providing evidence for association of this gene with a corticotropinoma. A 15-year-old male presenting with hypercortisolemia was diagnosed with CD. Remission was achieved after surgical resection of a corticotropin (ACTH)-producing pituitary microadenoma, but recurrence 3 years later prompted reoperation and radiotherapy. Five years after the original diagnosis, the patient developed ACTH-independent Cushing syndrome, and a diagnosis of primary pigmented nodular adrenocortical disease was confirmed. A PRKAR1A mutation (c.671delG, p.G225Afs*16) was detected in a germline DNA sample from the patient, which displayed loss of heterozygosity in the corticotropinoma. No other germline or somatic mutations of interest were found. As corticotropinomas are not a known component of Carney complex (CNC), we performed loss of heterozygosity and messenger RNA stability studies in the patient's tissues, and analyzed the effect of Prkar1a silencing on AtT-20/D16v-F2 mouse corticotropinoma cells. No PRKAR1A defects were found among 97 other pediatric CD patients studied. Our clinical case and experimental data support a role for PRKAR1A in the pathogenesis of a corticotroph cell tumor. This is a molecularly confirmed report of a corticotropinoma presenting in association with CNC. We conclude that germline PRKAR1A mutations are a novel, albeit apparently infrequent, cause of CD.
SUBMITTER: Hernandez-Ramirez LC
PROVIDER: S-EPMC5686778 | biostudies-literature | 2017 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA