Unknown

Dataset Information

0

Long-term balancing selection contributes to adaptation in Arabidopsis and its relatives.


ABSTRACT: In contrast to positive selection, which reduces genetic variation by fixing beneficial alleles, balancing selection maintains genetic variation within a population or species and plays crucial roles in adaptation in diverse organisms. However, which genes, genome-wide, are under balancing selection and the extent to which these genes are involved in adaptation are largely unknown.We performed a genome-wide scan for genes under balancing selection across two plant species, Arabidopsis thaliana and its relative Capsella rubella, which diverged about 8 million generations ago. Among hundreds of genes with shared coding-region polymorphisms, we find evidence for long-term balancing selection in five genes: AT1G35220, AT2G16570, AT4G29360, AT5G38460, and AT5G44000. These genes are involved in the response to biotic and abiotic stress and other fundamental biochemical processes. More intriguingly, for these genes, we detected significant ecological diversification between the two haplotype groups, suggesting that balancing selection has been very important for adaptation.Our results indicate that beyond the well-known S-locus genes and resistance genes, many loci are under balancing selection. These genes are mostly correlated with resistance to stress or other fundamental functions and likely play a more important role in adaptation to diverse habitats than previously thought.

SUBMITTER: Wu Q 

PROVIDER: S-EPMC5686891 | biostudies-literature | 2017 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Long-term balancing selection contributes to adaptation in Arabidopsis and its relatives.

Wu Qiong Q   Han Ting-Shen TS   Chen Xi X   Chen Jia-Fu JF   Zou Yu-Pan YP   Li Zi-Wen ZW   Xu Yong-Chao YC   Guo Ya-Long YL  

Genome biology 20171115 1


<h4>Background</h4>In contrast to positive selection, which reduces genetic variation by fixing beneficial alleles, balancing selection maintains genetic variation within a population or species and plays crucial roles in adaptation in diverse organisms. However, which genes, genome-wide, are under balancing selection and the extent to which these genes are involved in adaptation are largely unknown.<h4>Results</h4>We performed a genome-wide scan for genes under balancing selection across two pl  ...[more]

Similar Datasets

| S-EPMC4909129 | biostudies-literature
| S-EPMC5850717 | biostudies-literature
| S-EPMC5952967 | biostudies-literature
| S-EPMC10243990 | biostudies-literature
| S-EPMC5873921 | biostudies-literature
| S-EPMC3341824 | biostudies-literature
| S-EPMC6426441 | biostudies-literature
| S-EPMC8453498 | biostudies-literature
| S-EPMC8756184 | biostudies-literature
| S-EPMC1852088 | biostudies-literature