Unknown

Dataset Information

0

Enhanced Radiotherapy using Bismuth Sulfide Nanoagents Combined with Photo-thermal Treatment.


ABSTRACT: Nanotechniques that can improve the effectiveness of radiotherapy (RT) by integrating it with multimodal imaging are highly desirable. Results In this study, we fabricated Bi2S3 nanorods that have attractive features such as their ability to function as contrast agents for X-ray computed tomography (CT) and photoacoustic (PA) imaging as well as good biocompatibility. Both in vitro and in vivo studies confirmed that the Bi2S3 nanoagents could potentiate the lethal effects of radiation via amplifying the local radiation dose and enhancing the anti-tumor efficacy of RT by augmenting the photo-thermal effect. Furthermore, the nanoagent-mediated hyperthermia could effectively increase the oxygen concentration in hypoxic regions thereby inhibiting the expression of hypoxia-inducible factor (HIF-1?). This, in turn, interfered with DNA repair via decreasing the expression of DNA repair-related proteins to overcome radio-resistance. Also, RT combined with nanoagent-mediated hyperthermia could substantially suppress tumor metastasis via down-regulating angiogenic factors. Conclusion In summary, we constructed a single-component powerful nanoagent for CT/PA imaging-guided tumor radiotherapy and, most importantly, explored the potential mechanisms of nanoagent-mediated photo-thermal treatment for enhancing the efficacy of RT in a synergistic manner.

SUBMITTER: Cheng X 

PROVIDER: S-EPMC5694999 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

Enhanced Radiotherapy using Bismuth Sulfide Nanoagents Combined with Photo-thermal Treatment.

Cheng Xiaju X   Yong Yuan Y   Dai Yiheng Y   Song Xin X   Yang Gang G   Pan Yue Y   Ge Cuicui C  

Theranostics 20170920 17


Nanotechniques that can improve the effectiveness of radiotherapy (RT) by integrating it with multimodal imaging are highly desirable. <b>Results</b> In this study, we fabricated Bi<sub>2</sub>S<sub>3</sub> nanorods that have attractive features such as their ability to function as contrast agents for X-ray computed tomography (CT) and photoacoustic (PA) imaging as well as good biocompatibility. Both <i>in vitro</i> and <i>in vivo</i> studies confirmed that the Bi<sub>2</sub>S<sub>3</sub> nanoag  ...[more]

Similar Datasets

| S-EPMC5282560 | biostudies-literature
| S-EPMC7579297 | biostudies-literature
| S-EPMC9290530 | biostudies-literature
| S-EPMC9082305 | biostudies-literature
| S-EPMC5477511 | biostudies-literature
| S-EPMC8626591 | biostudies-literature
| S-EPMC6504251 | biostudies-literature
| S-EPMC9588950 | biostudies-literature
| S-EPMC3436912 | biostudies-other
| S-EPMC9057183 | biostudies-literature