Unknown

Dataset Information

0

Kindlin-2 Association with Rho GDP-Dissociation Inhibitor ? Suppresses Rac1 Activation and Podocyte Injury.


ABSTRACT: Alteration of podocyte behavior is critically involved in the development and progression of many forms of human glomerular diseases. The molecular mechanisms that control podocyte behavior, however, are not well understood. Here, we investigated the role of Kindlin-2, a component of cell-matrix adhesions, in podocyte behavior in vivo Ablation of Kindlin-2 in podocytes resulted in alteration of actin cytoskeletal organization, reduction of the levels of slit diaphragm proteins, effacement of podocyte foot processes, and ultimately massive proteinuria and death due to kidney failure. Through proteomic analyses and in vitro coimmunoprecipitation experiments, we identified Rho GDP-dissociation inhibitor ? (RhoGDI?) as a Kindlin-2-associated protein. Loss of Kindlin-2 in podocytes significantly reduced the expression of RhoGDI? and resulted in the dissociation of Rac1 from RhoGDI?, leading to Rac1 hyperactivation and increased motility of podocytes. Inhibition of Rac1 activation effectively suppressed podocyte motility and alleviated the podocyte defects and proteinuria induced by the loss of Kindlin-2 in vivo Our results identify a novel Kindlin-2-RhoGDI?-Rac1 signaling axis that is critical for regulation of podocyte structure and function in vivo and provide evidence that it may serve as a useful target for therapeutic control of podocyte injury and associated glomerular diseases.

SUBMITTER: Sun Y 

PROVIDER: S-EPMC5698060 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Kindlin-2 Association with Rho GDP-Dissociation Inhibitor <i>α</i> Suppresses Rac1 Activation and Podocyte Injury.

Sun Ying Y   Guo Chen C   Ma Ping P   Lai Yumei Y   Yang Fan F   Cai Jun J   Cheng Zhehao Z   Zhang Kuo K   Liu Zhongzhen Z   Tian Yeteng Y   Sheng Yue Y   Tian Ruijun R   Deng Yi Y   Xiao Guozhi G   Wu Chuanyue C  

Journal of the American Society of Nephrology : JASN 20170803 12


Alteration of podocyte behavior is critically involved in the development and progression of many forms of human glomerular diseases. The molecular mechanisms that control podocyte behavior, however, are not well understood. Here, we investigated the role of Kindlin-2, a component of cell-matrix adhesions, in podocyte behavior <i>in vivo</i> Ablation of Kindlin-2 in podocytes resulted in alteration of actin cytoskeletal organization, reduction of the levels of slit diaphragm proteins, effacement  ...[more]

Similar Datasets

| S-EPMC2701105 | biostudies-literature
| S-EPMC3742540 | biostudies-literature
| S-EPMC4556268 | biostudies-literature
| S-EPMC2583580 | biostudies-literature
| S-EPMC3815690 | biostudies-literature
| S-EPMC3087630 | biostudies-literature
| S-EPMC1223982 | biostudies-other
| S-EPMC2364637 | biostudies-literature
| S-EPMC4450061 | biostudies-literature
| S-EPMC20713 | biostudies-literature