Unknown

Dataset Information

0

Chemical Genetic Interaction Profiling Reveals Determinants of Intrinsic Antibiotic Resistance in Mycobacterium tuberculosis.


ABSTRACT: Chemotherapy for tuberculosis (TB) is lengthy and could benefit from synergistic adjuvant therapeutics that enhance current and novel drug regimens. To identify genetic determinants of intrinsic antibiotic susceptibility in Mycobacterium tuberculosis, we applied a chemical genetic interaction (CGI) profiling approach. We screened a saturated transposon mutant library and identified mutants that exhibit altered fitness in the presence of partially inhibitory concentrations of rifampin, ethambutol, isoniazid, vancomycin, and meropenem, antibiotics with diverse mechanisms of action. This screen identified the M. tuberculosis cell envelope to be a major determinant of antibiotic susceptibility but did not yield mutants whose increase in susceptibility was due to transposon insertions in genes encoding efflux pumps. Intrinsic antibiotic resistance determinants affecting resistance to multiple antibiotics included the peptidoglycan-arabinogalactan ligase Lcp1, the mycolic acid synthase MmaA4, the protein translocase SecA2, the mannosyltransferase PimE, the cell envelope-associated protease CaeA/Hip1, and FecB, a putative iron dicitrate-binding protein. Characterization of a deletion mutant confirmed FecB to be involved in the intrinsic resistance to every antibiotic analyzed. In contrast to its predicted function, FecB was dispensable for growth in low-iron medium and instead functioned as a critical mediator of envelope integrity.

SUBMITTER: Xu W 

PROVIDER: S-EPMC5700314 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Chemical Genetic Interaction Profiling Reveals Determinants of Intrinsic Antibiotic Resistance in Mycobacterium tuberculosis.

Xu Weizhen W   DeJesus Michael A MA   Rücker Nadine N   Engelhart Curtis A CA   Wright Meredith G MG   Healy Claire C   Lin Kan K   Wang Ruojun R   Park Sae Woong SW   Ioerger Thomas R TR   Schnappinger Dirk D   Ehrt Sabine S  

Antimicrobial agents and chemotherapy 20171122 12


Chemotherapy for tuberculosis (TB) is lengthy and could benefit from synergistic adjuvant therapeutics that enhance current and novel drug regimens. To identify genetic determinants of intrinsic antibiotic susceptibility in <i>Mycobacterium tuberculosis</i>, we applied a chemical genetic interaction (CGI) profiling approach. We screened a saturated transposon mutant library and identified mutants that exhibit altered fitness in the presence of partially inhibitory concentrations of rifampin, eth  ...[more]

Similar Datasets

| S-EPMC10786857 | biostudies-literature
| S-EPMC8557931 | biostudies-literature
| S-EPMC1186028 | biostudies-literature
| S-EPMC8311663 | biostudies-literature
2019-05-31 | GSE129835 | GEO
| S-EPMC4212837 | biostudies-literature
| S-EPMC9683719 | biostudies-literature
| S-EPMC8707978 | biostudies-literature
| S-EPMC310192 | biostudies-literature
| S-EPMC3762836 | biostudies-literature