Unknown

Dataset Information

0

Free-running Sn precipitates: an efficient phase separation mechanism for metastable Ge1-xSnx epilayers.


ABSTRACT: The revival of interest in Ge1-xSnx alloys with x???10% is mainly owed to the recent demonstration of optical gain in this group-IV heterosystem. Yet, Ge and Sn are immiscible over about 98% of the composition range, which renders epilayers based on this material system inherently metastable. Here, we address the temperature stability of pseudomorphic Ge1-xSnx films grown by molecular beam epitaxy. Both the growth temperature dependence and the influence of post-growth annealing steps were investigated. In either case we observe that the decomposition of epilayers with Sn concentrations of around 10% sets in above ?230?°C, the eutectic temperature of the Ge/Sn system. Time-resolved in-situ annealing experiments in a scanning electron microscope reveal the crucial role of liquid Sn precipitates in this phase separation process. Driven by a gradient of the chemical potential, the Sn droplets move on the surface along preferential crystallographic directions, thereby taking up Sn and Ge from the strained Ge1-xSnx layer. While Sn-uptake increases the volume of the melt, single-crystalline Ge becomes re-deposited by a liquid-phase epitaxial process at the trailing edge of the droplet. This process makes phase separation of metastable GeSn layers particularly efficient at rather low temperatures.

SUBMITTER: Groiss H 

PROVIDER: S-EPMC5700949 | biostudies-literature | 2017 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Free-running Sn precipitates: an efficient phase separation mechanism for metastable Ge<sub>1-x</sub>Sn<sub>x</sub> epilayers.

Groiss Heiko H   Glaser Martin M   Schatzl Magdalena M   Brehm Moritz M   Gerthsen Dagmar D   Roth Dietmar D   Bauer Peter P   Schäffler Friedrich F  

Scientific reports 20171123 1


The revival of interest in Ge<sub>1-x</sub>Sn<sub>x</sub> alloys with x ≥ 10% is mainly owed to the recent demonstration of optical gain in this group-IV heterosystem. Yet, Ge and Sn are immiscible over about 98% of the composition range, which renders epilayers based on this material system inherently metastable. Here, we address the temperature stability of pseudomorphic Ge<sub>1-x</sub>Sn<sub>x</sub> films grown by molecular beam epitaxy. Both the growth temperature dependence and the influen  ...[more]

Similar Datasets

| S-EPMC6202951 | biostudies-literature
| S-EPMC10931956 | biostudies-literature
| S-EPMC8153542 | biostudies-literature
| S-EPMC10051284 | biostudies-literature
| S-EPMC10134428 | biostudies-literature
| S-EPMC4909814 | biostudies-literature
| S-EPMC8280122 | biostudies-literature
| S-EPMC8048604 | biostudies-literature
| S-EPMC6972534 | biostudies-literature
| S-EPMC8495869 | biostudies-literature