Reversing thyroid-hormone-mediated repression of a HSV-1 promoter via computationally guided mutagenesis.
Ontology highlight
ABSTRACT: Thyroid hormones (THs) and their DNA-binding nuclear receptors (TRs) direct transcriptional regulation in diverse ways depending on the host cell environment and specific promoter characteristics of TH-sensitive genes. This study sought to elucidate the impact on transcriptional repression of nucleotide sequence or orientation within TR binding sites - the TH response elements (TREs) of TH-sensitive promoters - to better understand ligand-dependent transcriptional repression of wild-type promoters. Computational analysis of the HSV-1 thymidine kinase (TK) gene TRE bound by TR and retinoid X receptor (RXR) revealed a single TRE point mutation sufficient to reverse the TRE orientation. In vitro experiments showed that the TRE point mutation had distinct impacts on promoter activity, sufficient to reverse the TH-dependent negative regulation in neuroendocrine differentiated cells. This point mutation altered the promoter's regulatory mechanism by discrete changes in transcription factor TR occupancy and altered enrichment of the repressive chromatin modification of histone-3-lysine-9-trimethyl (H3K9Me3). Insights relating to this negative TRE (nTRE) mechanism aids our understanding of other nTREs and TRE mutations associated with TH and herpes diseases.
SUBMITTER: Figliozzi RW
PROVIDER: S-EPMC5702054 | biostudies-literature | 2017 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA