Unknown

Dataset Information

0

Learning to identify Protected Health Information by integrating knowledge- and data-driven algorithms: A case study on psychiatric evaluation notes.


ABSTRACT: De-identification of clinical narratives is one of the main obstacles to making healthcare free text available for research. In this paper we describe our experience in expanding and tailoring two existing tools as part of the 2016 CEGS N-GRID Shared Tasks Track 1, which evaluated de-identification methods on a set of psychiatric evaluation notes for up to 25 different types of Protected Health Information (PHI). The methods we used rely on machine learning on either a large or small feature space, with additional strategies, including two-pass tagging and multi-class models, which both proved to be beneficial. The results show that the integration of the proposed methods can identify Health Information Portability and Accountability Act (HIPAA) defined PHIs with overall F1-scores of ?90% and above. Yet, some classes (Profession, Organization) proved again to be challenging given the variability of expressions used to reference given information.

SUBMITTER: Dehghan A 

PROVIDER: S-EPMC5705401 | biostudies-literature | 2017 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Learning to identify Protected Health Information by integrating knowledge- and data-driven algorithms: A case study on psychiatric evaluation notes.

Dehghan Azad A   Kovacevic Aleksandar A   Karystianis George G   Keane John A JA   Nenadic Goran G  

Journal of biomedical informatics 20170607


De-identification of clinical narratives is one of the main obstacles to making healthcare free text available for research. In this paper we describe our experience in expanding and tailoring two existing tools as part of the 2016 CEGS N-GRID Shared Tasks Track 1, which evaluated de-identification methods on a set of psychiatric evaluation notes for up to 25 different types of Protected Health Information (PHI). The methods we used rely on machine learning on either a large or small feature spa  ...[more]

Similar Datasets

| S-EPMC7156708 | biostudies-literature
| S-EPMC9413214 | biostudies-literature
| S-EPMC10569207 | biostudies-literature
| S-EPMC6220240 | biostudies-literature
| S-EPMC9407063 | biostudies-literature
| S-EPMC7828299 | biostudies-literature
| S-EPMC11007235 | biostudies-literature
| S-EPMC9594883 | biostudies-literature
| S-EPMC9524999 | biostudies-literature
| S-EPMC11309603 | biostudies-literature