Project description:Nanoparticle relaxation time measurements have many applications including characterizing molecular binding, viscosity, heating, and local matrix stiffness. The methods capable of in vivo application are extremely limited. The hypothesis investigated by the authors was that the relaxation time could be measured quantitatively using magnetic spectroscopy of nanoparticle Brownian motion (MSB).The MSB signal (1) reflects the nanoparticle rotational Brownian motion, (2) can be measured from very low nanoparticle concentrations, and (3) is a function of the product of the drive frequency and the relaxation time characterizing Brownian motion. To estimate the relaxation time, the MSB signal was measured at several frequencies. The MSB signal for nanoparticles with altered relaxation time is a scaled version of that for reference nanoparticles with a known relaxation time. The scaling factor linking the altered and reference MSB measurements is the same factor linking the altered and reference relaxation times. The method was tested using glycerol solutions of varying viscosities to obtain continuously variable relaxation times.The measured relaxation time increased with increasing viscosity of the solution in which the nanoparticles resided. The MSB estimated relaxation time matched the calculated relaxation times based on viscosity with 2% average error.MSB can be used to monitor the nanoparticle relaxation time quantitatively through a scale space correlation of the MSB signal as a function of frequency.
Project description:Arterial spin labeling (ASL) is increasingly applied for cerebral blood flow mapping, but [Formula: see text] relaxation of the ASL signal magnetization is often ignored, although it may be clinically relevant. To investigate the extent, to which quantitative [Formula: see text] values in gray matter (GM) obtained by pseudocontinuous ASL (pCASL) perfusion MRI can be reproduced, are reliable and a potential neuroscientific biomarker, a prospective study was performed with ten healthy volunteers (5F,28?±?3y) at a 3 T scanner. A [Formula: see text]-prepared pCASL sequence enabled the measurement of quantitative [Formula: see text] and perfusion maps. [Formula: see text] times were modeled per voxel and analyzed within four GM-regions-of-interest (ROI). The intraclass correlation coefficients (ICCs) of the quantified ASL-[Formula: see text] varied across brain regions. When averaged across subjects and postlabeling delays (PLDs), the ICCs ranged from reasonable values in parietal regions (ICC?=?0.56) to smaller values in frontal regions (ICC?=?0.36). Corresponding subject-averaged within-subject coefficients of variation (WSCVs) showed good test-retest measurement precision ([Formula: see text] for all PLDs), but more pronounced inter-subject variance. Reliability and precision of quantified ASL-[Formula: see text] were region-, PLD- and subject-specific, showing fair to robust results in occipital, parietal and temporal ROIs. The results give rise to consider the method for future cerebral studies, where variable perfusion or altered [Formula: see text] times are suspected.
Project description:The quantum relaxation time of electrons in condensed matters is an important physical property, but its direct measurement has been elusive for a century. Here, we report a breakthrough that allows direct determination of quantum relaxation time at zero and non-zero frequencies using optical measurement. Through dielectric loss function, we connect bound electron effects to the physical parameters of plasma resonance and find an extra term of quantum relaxation time from inelastic scattering between bound electrons and conduction electrons at non-zero frequencies. We demonstrate here that the frequency-dependent inelastic polarization effect of bound electrons is the dominant contribution to quantum relaxation time of conduction electrons at optical frequencies, and the elastic polarization effect of bound electrons also dramatically changes the plasma resonance frequency through effective screening to charge carriers.
Project description:PurposeMulti-echo spin-echo (MESE) protocol is the most effective tool for mapping T2 relaxation in vivo. Still, MESE extensive use of radiofrequency pulses causes magnetization transfer (MT)-related bias of the water signal, instigated by the presence of macromolecules (MMP). Here, we analyze the effects of MT on MESE signal, alongside their impact on quantitative T2 measurements.MethodsStudy used 3 models: in vitro urea phantom, ex vivo horse brain, and in vivo human brain. MT ratio (MTR) was measured between single-SE and MESE protocols under different scan settings including varying echo train lengths, number of slices, and inter-slice gap. MTR and T2 values were extracted for each model and protocol.ResultsMT interactions biased MESE signals, and in certain settings, the corresponding T2 values. T2 underestimation of up to 4.3% was found versus single-SE values in vitro and up to 13.8% ex vivo, correlating with the MMP content. T2 bias originated from intra-slice saturation of the MMP, rather than from indirect saturation in multi-slice acquisitions. MT-related signal attenuation was caused by slice crosstalk and/or partial T1 recovery, whereas smaller contribution was caused by MMP interactions. Inter-slice gap had a similar effect on in vivo MTR (21.2%), in comparison to increasing the number of slices (18.9%).ConclusionsMT influences MESE protocols either by uniformly attenuating the entire echo train or by cumulatively attenuating the signal along the train. Although both processes depend on scan settings and MMP content, only the latter will cause underestimation of T2 .
Project description:The accuracy of metabolite concentrations measured using in vivo proton ((1) H) MRS is enhanced following correction for spin-spin (T2 ) relaxation effects. In addition, metabolite proton T2 relaxation times provide unique information regarding cellular environment and molecular mobility. Echo-time (TE) averaging (1) H MRS involves the collection and averaging of multiple TE steps, which greatly simplifies resulting spectra due to the attenuation of spin-coupled and macromolecule resonances. Given the simplified spectral appearance and inherent metabolite T2 relaxation information, the aim of the present proof-of-concept study was to develop a novel data processing scheme to estimate metabolite T2 relaxation times from TE-averaged (1) H MRS data. Spectral simulations are used to validate the proposed TE-averaging methods for estimating methyl proton T2 relaxation times for N-acetyl aspartate, total creatine, and choline-containing compounds. The utility of the technique and its reproducibility are demonstrated using data obtained in vivo from the posterior-occipital cortex of 10 healthy control subjects. Compared with standard methods, distinct advantages of this approach include built-in macromolecule resonance attenuation, in vivo T2 estimates closer to reported values when maximum TE ≈ T2 , and the potential for T2 calculation of metabolite resonances otherwise inseparable in standard (1) H MRS spectra recorded in vivo.
Project description:An integrative model is proposed to describe the dependence of the transverse relaxation rate of blood water protons (R2blood = 1/T2blood ) on hematocrit fraction and oxygenation fraction (Y). This unified model takes into account (a) the diamagnetic effects of albumin, hemoglobin and the cell membrane; (b) the paramagnetic effect of hemoglobin; (c) the effect of compartmental exchange between plasma and erythrocytes under both fast and slow exchange conditions that vary depending on field strength and compartmental relaxation rates and (d) the effect of diffusion through field gradients near the erythrocyte membrane. To validate the model, whole-blood and lysed-blood R2 data acquired previously using Carr-Purcell-Meiboom-Gill measurements as a function of inter-echo spacing τcp at magnetic fields of 3.0, 7.0, 9.4 and 11.7 T were fitted to determine the lifetimes (field-independent physiological constants) for water diffusion and exchange, as well as several physical constants, some of which are field-independent (magnetic susceptibilities) and some are field-dependent (relaxation rates for water protons in solutions of albumin and oxygenated and deoxygenated hemoglobin, ie, blood plasma and erythrocytes, respectively). This combined exchange-diffusion model allowed excellent fitting of the curve of the τcp -dependent relaxation rate dispersion at all four fields using a single average erythrocyte water lifetime, τery = 9.1 ± 1.4 ms, and an averaged diffusional correlation time, τD = 3.15 ± 0.43 ms. Using this model and the determined physiological time constants and relaxation parameters, blood T2 values published by multiple groups based on measurements at magnetic field strengths of 1.5 T and higher could be predicted correctly within error. Establishment of this theory is a fundamental step for quantitative modeling of the BOLD effect underlying functional MRI.
Project description:ObjectivesBecause size-based imaging criteria poorly capture biologic response in desmoid-type fibromatosis (DF), changes in MRI T2 signal intensity are frequently used as a response surrogate, but remain qualitative. We hypothesized that absolute quantification of DF T2 relaxation time derived from parametric T2 maps would be a feasible and effective imaging biomarker of disease activity.MethodsThis IRB-approved retrospective study included 11 patients with DF, managed by observation or systemic therapy, assessed by 3T MRI. Tumor maximum diameter, volume, and T2-weighted signal intensity were derived from manual tumor segmentations. Tumor:muscle T2 signal ratios were recorded. Two readers measured tumor T2 relaxation times using a commercial T2 scanning sequence, manual ROI delineation and commercial calculation software enabling estimation of reader reliability. Objective response rates based on RECIST1.1 and best responses were compared between size-based and signal-based parameters.ResultsMedian patient age was 52.6 years; 8 subjects were female (73%). Nine patients with longitudinal assessments were followed for an average of 314 days. Median baseline tumor diameter was 7.2 cm (range 4.4 - 18.2 cm). Median baseline T2 was 65.1 ms (range 40.4 - 94.8 ms, n=11); median at last follow-up was 44.3 ms (-32% from baseline; range 29.3 - 94.7 ms, n=9). T2 relaxation times correlated with tumor:muscle T2 signal ratios, Spearman p=0.78 (p<0.001). T2 mapping showed high inter-reader reliability, ICC=0.84. The best response as a percentage change in T2 values was statistically significant (mean -17.9%, p=0.05, paired t-test) while change in diameter was not (mean -8.9%, p=0.12).ConclusionsAnalysis of T2 relaxation time maps of DF may offer a feasible quantitative biomarker for assessing the extent of response to treatment. This approach may have high inter-reader reliability.