Modeling a Predictive Energy Equation Specific for Maintenance Hemodialysis.
Ontology highlight
ABSTRACT: BACKGROUND:Hypermetabolism is theorized in patients diagnosed with chronic kidney disease who are receiving maintenance hemodialysis (MHD). We aimed to distinguish key disease-specific determinants of resting energy expenditure to create a predictive energy equation that more precisely establishes energy needs with the intent of preventing protein-energy wasting. MATERIALS AND METHODS:For this 3-year multisite cross-sectional study (N = 116), eligible participants were diagnosed with chronic kidney disease and were receiving MHD for at least 3 months. Predictors for the model included weight, sex, age, C-reactive protein (CRP), glycosylated hemoglobin, and serum creatinine. The outcome variable was measured resting energy expenditure (mREE). Regression modeling was used to generate predictive formulas and Bland-Altman analyses to evaluate accuracy. RESULTS:The majority were male (60.3%), black (81.0%), and non-Hispanic (76.7%), and 23% were ?65 years old. After screening for multicollinearity, the best predictive model of mREE (R2 = 0.67) included weight, age, sex, and CRP. Two alternative models with acceptable predictability (R2 = 0.66) were derived with glycosylated hemoglobin or serum creatinine. Based on Bland-Altman analyses, the maintenance hemodialysis equation that included CRP had the best precision, with the highest proportion of participants' predicted energy expenditure classified as accurate (61.2%) and with the lowest number of individuals with underestimation or overestimation. CONCLUSIONS:This study confirms disease-specific factors as key determinants of mREE in patients on MHD and provides a preliminary predictive energy equation. Further prospective research is necessary to test the reliability and validity of this equation across diverse populations of patients who are receiving MHD.
SUBMITTER: Byham-Gray LD
PROVIDER: S-EPMC5711615 | biostudies-literature | 2018 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA