Unknown

Dataset Information

0

CRISPR/Cas9 microinjection in oocytes disables pancreas development in sheep.


ABSTRACT: One of the ultimate goals of regenerative medicine is the generation of patient-specific organs from pluripotent stem cells (PSCs). Sheep are potential hosts for growing human organs through the technique of blastocyst complementation. We report here the creation of pancreatogenesis-disabled sheep by oocyte microinjection of CRISPR/Cas9 targeting PDX1, a critical gene for pancreas development. We compared the efficiency of target mutations after microinjecting the CRISPR/Cas9 system in metaphase II (MII) oocytes and zygote stage embryos. MII oocyte microinjection reduced lysis, improved blastocyst rate, increased the number of targeted bi-allelic mutations, and resulted in similar degree of mosaicism when compared to zygote microinjection. While the use of a single sgRNA was efficient at inducing mutated fetuses, the lack of complete gene inactivation resulted in animals with an intact pancreas. When using a dual sgRNA system, we achieved complete PDX1 disruption. This PDX1-/- fetus lacked a pancreas and provides the basis for the production of gene-edited sheep as a host for interspecies organ generation. In the future, combining gene editing with CRISPR/Cas9 and PSCs complementation could result in a powerful approach for human organ generation.

SUBMITTER: Vilarino M 

PROVIDER: S-EPMC5727233 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications


One of the ultimate goals of regenerative medicine is the generation of patient-specific organs from pluripotent stem cells (PSCs). Sheep are potential hosts for growing human organs through the technique of blastocyst complementation. We report here the creation of pancreatogenesis-disabled sheep by oocyte microinjection of CRISPR/Cas9 targeting PDX1, a critical gene for pancreas development. We compared the efficiency of target mutations after microinjecting the CRISPR/Cas9 system in metaphase  ...[more]

Similar Datasets

| S-EPMC6727204 | biostudies-literature
| S-EPMC4549068 | biostudies-literature
| S-EPMC5908666 | biostudies-literature
| S-EPMC8627868 | biostudies-literature
| S-EPMC4827023 | biostudies-literature
| S-EPMC5314402 | biostudies-literature
| S-EPMC8607826 | biostudies-literature
| S-EPMC4642230 | biostudies-literature
| S-EPMC7430632 | biostudies-literature
2019-12-20 | GSE139867 | GEO