Role of exosomes in hepatocellular carcinoma cell mobility alteration.
Ontology highlight
ABSTRACT: Exosomes have gained increased research focus due to their key roles as messengers. The components of exosomes include proteins and RNAs that may be horizontally transferred between adjacent or distant cells. Hepatocellular carcinoma (HCC) is among the most malignant types of cancer worldwide, with exosomes implicated to play a crucial role in its regulation; however, the possible function of exosomes in modulating the motile ability of tumor cells and key molecules in HCC remain largely unknown. To investigate the regulatory effect of exosomes on the motile ability of HCC cells, exosomes from the culture medium of different HCC origins (high metastatic MHCC97-H and low metastatic MHCC97-L cells) were isolated for in vitro migration and invasion assays. The results indicated that the motile ability of MHCC97-L cells was significantly increased by pretreatment with MHCC97-H-derived exosomes when compared with MHCC97-L-exosome pretreatment (P<0.05). To further characterize the function of exosomes at the molecular level, protein profiling of exosomes from different cell origins was performed, which identified 129 proteins. Among these, adenylyl cyclase-associated protein 1, a protein implicated in HCC metastasis, was significantly enriched in exosomes from cells with high motile ability (P<0.05). The results of the present study validated the regulatory effect of exosomes on the motile ability of HCC cells. Furthermore, systematic analysis of the protein profiles of exosomes from different origins identified potential factors correlated with HCC metastasis, which may provide a basis for future functional analysis of exosomes regarding their involvement in cancer metastasis and recurrence.
SUBMITTER: Wang S
PROVIDER: S-EPMC5727617 | biostudies-literature | 2017 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA