Unknown

Dataset Information

0

Protective role of trehalose during radiation and heavy metal stress in Aureobasidium subglaciale F134.


ABSTRACT: An isolated black yeast-like strain was obtained from radiation-polluted soil collected from Xinjiang province in northwest China. On the basis of ITS and LSU rDNA sequence analysis, in combination with the colony morphology and phenotypic properties, the isolated strain was revealed to represent a novel variety of Aureobasidium subglaciale, designated as A. subglaciale F134. Compared to other yeasts and bacteria, this isolate displayed superior resistance to gamma irradiation, UV light, and heavy metal ions. It was discovered that the resistance of the isolate was correlated with the stress protector trehalose. Through the overexpression of the trehalose-6-phosphate synthase gene tps1 and the deletion of acid trehalase gene ath1, the APT?A double mutant exhibited a survival rate of 1% under 20?kGy of gamma-radiation, 2% survival rate at a UV dosage of 250?J/m2, and tolerance towards Pb2+ as high as 1500?mg/L, which was in agreement with the high accumulation of intracellular trehalose compared to the wild-type strain. Finally, the protective effects and the mechanism of trehalose accumulation in A. subglaciale F134 were investigated, revealing a significant activation of the expression of many of the stress tolerance genes, offering new perspectives on the adaptations of radioresistant microorganisms.

SUBMITTER: Liu T 

PROVIDER: S-EPMC5730648 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Protective role of trehalose during radiation and heavy metal stress in Aureobasidium subglaciale F134.

Liu Tingting T   Zhu Liying L   Zhang Zhiping Z   Huang He H   Zhang Zhidong Z   Jiang Ling L  

Scientific reports 20171214 1


An isolated black yeast-like strain was obtained from radiation-polluted soil collected from Xinjiang province in northwest China. On the basis of ITS and LSU rDNA sequence analysis, in combination with the colony morphology and phenotypic properties, the isolated strain was revealed to represent a novel variety of Aureobasidium subglaciale, designated as A. subglaciale F134. Compared to other yeasts and bacteria, this isolate displayed superior resistance to gamma irradiation, UV light, and hea  ...[more]

Similar Datasets

| PRJEB22938 | ENA
2021-04-20 | GSE172373 | GEO
2021-10-02 | GSE163156 | GEO
| S-EPMC7883823 | biostudies-literature
| S-EPMC3771949 | biostudies-literature
| PRJNA663293 | ENA
| PRJNA793839 | ENA
| S-EPMC2820964 | biostudies-literature
| S-EPMC7460937 | biostudies-literature
| S-EPMC3893592 | biostudies-literature