Unknown

Dataset Information

0

An open resource for transdiagnostic research in pediatric mental health and learning disorders.


ABSTRACT: Technological and methodological innovations are equipping researchers with unprecedented capabilities for detecting and characterizing pathologic processes in the developing human brain. As a result, ambitions to achieve clinically useful tools to assist in the diagnosis and management of mental health and learning disorders are gaining momentum. To this end, it is critical to accrue large-scale multimodal datasets that capture a broad range of commonly encountered clinical psychopathology. The Child Mind Institute has launched the Healthy Brain Network (HBN), an ongoing initiative focused on creating and sharing a biobank of data from 10,000 New York area participants (ages 5-21). The HBN Biobank houses data about psychiatric, behavioral, cognitive, and lifestyle phenotypes, as well as multimodal brain imaging (resting and naturalistic viewing fMRI, diffusion MRI, morphometric MRI), electroencephalography, eye-tracking, voice and video recordings, genetics and actigraphy. Here, we present the rationale, design and implementation of HBN protocols. We describe the first data release (n=664) and the potential of the biobank to advance related areas (e.g., biophysical modeling, voice analysis).

SUBMITTER: Alexander LM 

PROVIDER: S-EPMC5735921 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

An open resource for transdiagnostic research in pediatric mental health and learning disorders.

Alexander Lindsay M LM   Escalera Jasmine J   Ai Lei L   Andreotti Charissa C   Febre Karina K   Mangone Alexander A   Vega-Potler Natan N   Langer Nicolas N   Alexander Alexis A   Kovacs Meagan M   Litke Shannon S   O'Hagan Bridget B   Andersen Jennifer J   Bronstein Batya B   Bui Anastasia A   Bushey Marijayne M   Butler Henry H   Castagna Victoria V   Camacho Nicolas N   Chan Elisha E   Citera Danielle D   Clucas Jon J   Cohen Samantha S   Dufek Sarah S   Eaves Megan M   Fradera Brian B   Gardner Judith J   Grant-Villegas Natalie N   Green Gabriella G   Gregory Camille C   Hart Emily E   Harris Shana S   Horton Megan M   Kahn Danielle D   Kabotyanski Katherine K   Karmel Bernard B   Kelly Simon P SP   Kelly Simon P SP   Kleinman Kayla K   Koo Bonhwang B   Kramer Eliza E   Lennon Elizabeth E   Lord Catherine C   Mantello Ginny G   Margolis Amy A   Merikangas Kathleen R KR   Milham Judith J   Minniti Giuseppe G   Neuhaus Rebecca R   Levine Alexandra A   Osman Yael Y   Parra Lucas C LC   Pugh Ken R KR   Racanello Amy A   Restrepo Anita A   Saltzman Tian T   Septimus Batya B   Tobe Russell R   Waltz Rachel R   Williams Anna A   Yeo Anna A   Castellanos Francisco X FX   Klein Arno A   Paus Tomas T   Leventhal Bennett L BL   Craddock R Cameron RC   Koplewicz Harold S HS   Milham Michael P MP  

Scientific data 20171219


Technological and methodological innovations are equipping researchers with unprecedented capabilities for detecting and characterizing pathologic processes in the developing human brain. As a result, ambitions to achieve clinically useful tools to assist in the diagnosis and management of mental health and learning disorders are gaining momentum. To this end, it is critical to accrue large-scale multimodal datasets that capture a broad range of commonly encountered clinical psychopathology. The  ...[more]

Similar Datasets

| S-EPMC11540905 | biostudies-literature
| S-EPMC3966505 | biostudies-literature
| S-EPMC10085934 | biostudies-literature
| S-EPMC5556258 | biostudies-other
| S-EPMC9513503 | biostudies-literature
| S-EPMC8941086 | biostudies-literature
| PRJNA507064 | ENA
| PRJNA507063 | ENA
| S-EPMC7293215 | biostudies-literature
| S-EPMC6368440 | biostudies-literature