Unknown

Dataset Information

0

Allosteric modulation of protein-protein interactions by individual lipid binding events.


ABSTRACT: The diverse lipid environment of the biological membrane can modulate the structure and function of membrane proteins. However, little is known about the role that lipids play in modulating protein-protein interactions. Here we employed native mass spectrometry (MS) to determine how individual lipid-binding events to the ammonia channel (AmtB) modulate its interaction with the regulatory protein, GlnK. The thermodynamic signature of AmtB-GlnK in the absence of lipids indicates conformational dynamics. A small number of lipids bound to AmtB is sufficient to modulate the interaction with GlnK, and lipids with different headgroups display a range of allosteric modulation. We also find that lipid chain length and stereochemistry can affect the degree of allosteric modulation, indicating an unforeseen selectivity of membrane proteins toward the chemistry of lipid tails. These results demonstrate that individual lipid-binding events can allosterically modulate the interactions of integral membrane and soluble proteins.

SUBMITTER: Cong X 

PROVIDER: S-EPMC5736629 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Allosteric modulation of protein-protein interactions by individual lipid binding events.

Cong Xiao X   Liu Yang Y   Liu Wen W   Liang Xiaowen X   Laganowsky Arthur A  

Nature communications 20171219 1


The diverse lipid environment of the biological membrane can modulate the structure and function of membrane proteins. However, little is known about the role that lipids play in modulating protein-protein interactions. Here we employed native mass spectrometry (MS) to determine how individual lipid-binding events to the ammonia channel (AmtB) modulate its interaction with the regulatory protein, GlnK. The thermodynamic signature of AmtB-GlnK in the absence of lipids indicates conformational dyn  ...[more]

Similar Datasets

| S-EPMC7188303 | biostudies-literature
| S-EPMC3617199 | biostudies-literature
| S-EPMC4500398 | biostudies-literature
| S-EPMC6506392 | biostudies-literature
| S-EPMC3102551 | biostudies-literature
| S-EPMC3365166 | biostudies-literature
| S-EPMC3714935 | biostudies-literature
| S-EPMC5849739 | biostudies-literature
| S-EPMC3937654 | biostudies-literature
| S-EPMC8005122 | biostudies-literature