Unknown

Dataset Information

0

Replication stress-induced endogenous DNA damage drives cellular senescence induced by a sub-lethal oxidative stress.


ABSTRACT: Although oxidative stress has been shown to induce senescence and replication stress independently, no study has implicated unresolved replication stress as the driver for cellular senescence in response to oxidative stress. Using cells exposed to increasing concentrations of hydrogen peroxide, we show that sub-lethal amount of exogenous hydrogen peroxide induces two waves of DNA damage. The first wave is rapid and transient while the second wave coincides with the cells transition from the S to the G2/M phases of cell cycle. Subsequently, cells enter growth arrest accompanied by the acquisition of senescence-associated characteristics. Furthermore, a p53-dependent decrease in Rad51, which is associated with the formation of DNA segments with chromatin alterations reinforcing senescence, and Lamin B1 that is involved in chromatin remodeling, is observed during the establishment of the senescent phenotype. On the other hand, increase in senescence associated-?-Gal activity, a classical marker of senescence and HMGA2, a marker of the senescence-associated heterochromatin foci, is shown to be independent of p53. Together, our findings implicate replication stress-induced endogenous DNA damage as the driver for the establishment of cellular senescence upon sub-lethal oxidative stress, and implicate the role of p53 in some but not all hallmarks of the senescent phenotype.

SUBMITTER: Venkatachalam G 

PROVIDER: S-EPMC5737622 | biostudies-literature | 2017 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Replication stress-induced endogenous DNA damage drives cellular senescence induced by a sub-lethal oxidative stress.

Venkatachalam Gireedhar G   Surana Uttam U   Clément Marie-Véronique MV  

Nucleic acids research 20171001 18


Although oxidative stress has been shown to induce senescence and replication stress independently, no study has implicated unresolved replication stress as the driver for cellular senescence in response to oxidative stress. Using cells exposed to increasing concentrations of hydrogen peroxide, we show that sub-lethal amount of exogenous hydrogen peroxide induces two waves of DNA damage. The first wave is rapid and transient while the second wave coincides with the cells transition from the S to  ...[more]

Similar Datasets

| S-EPMC7824063 | biostudies-literature
| S-EPMC7493674 | biostudies-literature
| S-EPMC8282384 | biostudies-literature
| S-EPMC9307685 | biostudies-literature
| S-EPMC7916510 | biostudies-literature
| S-EPMC6509403 | biostudies-literature
| S-EPMC6135677 | biostudies-literature
| S-EPMC9135943 | biostudies-literature
| S-EPMC4431925 | biostudies-literature
| S-EPMC6133336 | biostudies-literature