Unknown

Dataset Information

0

Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites.


ABSTRACT: Organic-inorganic perovskite solar cells have attracted tremendous attention because of their remarkably high power conversion efficiencies. To further improve device performance, it is imperative to obtain fundamental understandings on the photo-response and long-term stability down to the microscopic level. Here, we report the quantitative nanoscale photoconductivity imaging on two methylammonium lead triiodide thin films with different efficiencies by light-stimulated microwave impedance microscopy. The microwave signals are largely uniform across grains and grain boundaries, suggesting that microstructures do not lead to strong spatial variations of the intrinsic photo-response. In contrast, the measured photoconductivity and lifetime are strongly affected by bulk properties such as the sample crystallinity. As visualized by the spatial evolution of local photoconductivity, the degradation process begins with the disintegration of grains rather than nucleation and propagation from visible boundaries between grains. Our findings provide insights to improve the electro-optical properties of perovskite thin films towards large-scale commercialization.

SUBMITTER: Chu Z 

PROVIDER: S-EPMC5738431 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites.

Chu Zhaodong Z   Yang Mengjin M   Schulz Philip P   Wu Di D   Ma Xin X   Seifert Edward E   Sun Liuyang L   Li Xiaoqin X   Zhu Kai K   Lai Keji K  

Nature communications 20171220 1


Organic-inorganic perovskite solar cells have attracted tremendous attention because of their remarkably high power conversion efficiencies. To further improve device performance, it is imperative to obtain fundamental understandings on the photo-response and long-term stability down to the microscopic level. Here, we report the quantitative nanoscale photoconductivity imaging on two methylammonium lead triiodide thin films with different efficiencies by light-stimulated microwave impedance micr  ...[more]

Similar Datasets

| S-EPMC6328620 | biostudies-literature
| S-EPMC4987786 | biostudies-literature
| S-EPMC5673065 | biostudies-literature
| S-EPMC5455925 | biostudies-other
| S-EPMC4794706 | biostudies-other
| S-EPMC4822042 | biostudies-literature
| S-EPMC5492664 | biostudies-literature
| S-EPMC4802114 | biostudies-literature
| S-EPMC4603615 | biostudies-literature
| S-EPMC4643191 | biostudies-other