Unknown

Dataset Information

0

Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2-/- ) mice.


ABSTRACT: Cholangiocyte senescence has been linked to primary sclerosing cholangitis (PSC). Persistent secretion of growth factors by senescent cholangiocytes leads to the activation of stromal fibroblasts (ASFs), which are drivers of fibrosis. The activated phenotype of ASFs is characterized by an increased sensitivity to apoptotic stimuli. Here, we examined the mechanisms of apoptotic priming in ASFs and explored a combined targeting strategy to deplete senescent cholangiocytes and ASFs from fibrotic tissue to ameliorate liver fibrosis. Using a coculture system, we determined that senescent cholangiocytes promoted quiescent mesenchymal cell activation in a platelet-derived growth factor (PDGF)-dependent manner. We also identified B-cell lymphoma-extra large (Bcl-xL) as a key survival factor in PDGF-activated human and mouse fibroblasts. Bcl-xL was also up-regulated in senescent cholangiocytes. In vitro, inhibition of Bcl-xL by the small molecule Bcl-2 homology domain 3 mimetic, A-1331852, or Bcl-xL-specific small interfering RNA induced apoptosis in PDGF-activated fibroblasts, but not in quiescent fibroblasts. Likewise, inhibition of Bcl-xL reduced the survival and increased apoptosis of senescent cholangiocytes, compared to nonsenescent cells. Treatment of multidrug resistance 2 gene knockout (Mdr2-/- ) mice with A-1331852 resulted in an 80% decrease in senescent cholangiocytes, a reduction of fibrosis-inducing growth factors and cytokines, decrease of ?-smooth muscle actin-positive ASFs, and finally in a significant reduction of liver fibrosis. CONCLUSION:Bcl-xL is a key survival factor in ASFs as well as in senescent cholangiocytes. Treatment with the Bcl-xL-specific inhibitor, A-1331852, reduces liver fibrosis, possibly by a dual effect on activated fibroblasts and senescent cholangiocytes. This mechanism represents an attractive therapeutic strategy in biliary fibrosis. (Hepatology 2018;67:247-259).

SUBMITTER: Moncsek A 

PROVIDER: S-EPMC5739965 | biostudies-literature | 2018 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2<sup>-/-</sup> ) mice.

Moncsek Anja A   Al-Suraih Mohammed S MS   Trussoni Christy E CE   O'Hara Steven P SP   Splinter Patrick L PL   Zuber Camille C   Patsenker Eleonora E   Valli Piero V PV   Fingas Christian D CD   Weber Achim A   Zhu Yi Y   Tchkonia Tamar T   Kirkland James L JL   Gores Gregory J GJ   Müllhaupt Beat B   LaRusso Nicholas F NF   Mertens Joachim C JC  

Hepatology (Baltimore, Md.) 20171129 1


Cholangiocyte senescence has been linked to primary sclerosing cholangitis (PSC). Persistent secretion of growth factors by senescent cholangiocytes leads to the activation of stromal fibroblasts (ASFs), which are drivers of fibrosis. The activated phenotype of ASFs is characterized by an increased sensitivity to apoptotic stimuli. Here, we examined the mechanisms of apoptotic priming in ASFs and explored a combined targeting strategy to deplete senescent cholangiocytes and ASFs from fibrotic ti  ...[more]

Similar Datasets

| S-EPMC7074378 | biostudies-literature
| S-EPMC6214714 | biostudies-literature
| S-EPMC11002922 | biostudies-literature
| S-EPMC1223107 | biostudies-other
| S-EPMC8791203 | biostudies-literature
| S-EPMC6838376 | biostudies-literature
| S-EPMC10776766 | biostudies-literature
| S-EPMC7669612 | biostudies-literature
| S-EPMC1184205 | biostudies-other
| S-EPMC6851002 | biostudies-literature