Unknown

Dataset Information

0

Hierarchical social networks shape gut microbial composition in wild Verreaux's sifaka.


ABSTRACT: In wild primates, social behaviour influences exposure to environmentally acquired and directly transmitted microorganisms. Prior studies indicate that gut microbiota reflect pairwise social interactions among chimpanzee and baboon hosts. Here, we demonstrate that higher-order social network structure-beyond just pairwise interactions-drives gut bacterial composition in wild lemurs, which live in smaller and more cohesive groups than previously studied anthropoid species. Using 16S rRNA gene sequencing and social network analysis of grooming contacts, we estimate the relative impacts of hierarchical (i.e. multilevel) social structure, individual demographic traits, diet, scent-marking, and habitat overlap on bacteria acquisition in a wild population of Verreaux's sifaka (Propithecus verreauxi) consisting of seven social groups. We show that social group membership is clearly reflected in the microbiomes of individual sifaka, and that social groups with denser grooming networks have more homogeneous gut microbial compositions. Within social groups, adults, more gregarious individuals, and individuals that scent-mark frequently harbour the greatest microbial diversity. Thus, the community structure of wild lemurs governs symbiotic relationships by constraining transmission between hosts and partitioning environmental exposure to microorganisms. This social cultivation of mutualistic gut flora may be an evolutionary benefit of tight-knit group living.

SUBMITTER: Perofsky AC 

PROVIDER: S-EPMC5740288 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hierarchical social networks shape gut microbial composition in wild Verreaux's sifaka.

Perofsky Amanda C AC   Lewis Rebecca J RJ   Abondano Laura A LA   Di Fiore Anthony A   Meyers Lauren Ancel LA  

Proceedings. Biological sciences 20171201 1868


In wild primates, social behaviour influences exposure to environmentally acquired and directly transmitted microorganisms. Prior studies indicate that gut microbiota reflect pairwise social interactions among chimpanzee and baboon hosts. Here, we demonstrate that higher-order social network structure-beyond just pairwise interactions-drives gut bacterial composition in wild lemurs, which live in smaller and more cohesive groups than previously studied anthropoid species. Using 16S rRNA gene seq  ...[more]

Similar Datasets

| S-EPMC4379495 | biostudies-literature
| S-EPMC8397773 | biostudies-literature
2024-05-29 | GSE231557 | GEO
| S-EPMC4733057 | biostudies-literature
| S-EPMC5863967 | biostudies-literature
| S-EPMC3979311 | biostudies-literature
| S-EPMC5551086 | biostudies-literature
| S-EPMC5830498 | biostudies-literature
| S-EPMC10292843 | biostudies-literature
| S-EPMC9205890 | biostudies-literature