Unknown

Dataset Information

0

Resilience and efficiency in transportation networks.


ABSTRACT: Urban transportation systems are vulnerable to congestion, accidents, weather, special events, and other costly delays. Whereas typical policy responses prioritize reduction of delays under normal conditions to improve the efficiency of urban road systems, analytic support for investments that improve resilience (defined as system recovery from additional disruptions) is still scarce. In this effort, we represent paved roads as a transportation network by mapping intersections to nodes and road segments between the intersections to links. We built road networks for 40 of the urban areas defined by the U.S. Census Bureau. We developed and calibrated a model to evaluate traffic delays using link loads. The loads may be regarded as traffic-based centrality measures, estimating the number of individuals using corresponding road segments. Efficiency was estimated as the average annual delay per peak-period auto commuter, and modeled results were found to be close to observed data, with the notable exception of New York City. Resilience was estimated as the change in efficiency resulting from roadway disruptions and was found to vary between cities, with increased delays due to a 5% random loss of road linkages ranging from 9.5% in Los Angeles to 56.0% in San Francisco. The results demonstrate that many urban road systems that operate inefficiently under normal conditions are nevertheless resilient to disruption, whereas some more efficient cities are more fragile. The implication is that resilience, not just efficiency, should be considered explicitly in roadway project selection and justify investment opportunities related to disaster and other disruptions.

SUBMITTER: Ganin AA 

PROVIDER: S-EPMC5744464 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Resilience and efficiency in transportation networks.

Ganin Alexander A AA   Kitsak Maksim M   Marchese Dayton D   Keisler Jeffrey M JM   Seager Thomas T   Linkov Igor I  

Science advances 20171220 12


Urban transportation systems are vulnerable to congestion, accidents, weather, special events, and other costly delays. Whereas typical policy responses prioritize reduction of delays under normal conditions to improve the efficiency of urban road systems, analytic support for investments that improve resilience (defined as system recovery from additional disruptions) is still scarce. In this effort, we represent paved roads as a transportation network by mapping intersections to nodes and road  ...[more]

Similar Datasets

| S-EPMC4882487 | biostudies-literature
| S-EPMC8630039 | biostudies-literature
| S-EPMC5388484 | biostudies-literature
| S-EPMC5539509 | biostudies-other
| S-EPMC9114029 | biostudies-literature
| S-EPMC8093754 | biostudies-literature
| S-EPMC11293662 | biostudies-literature
| S-EPMC11259266 | biostudies-literature
| S-EPMC8570939 | biostudies-literature
| S-EPMC10903895 | biostudies-literature