Unknown

Dataset Information

0

Crystal structure of peroxiredoxin 3 from Vibrio vulnificus and its implications for scavenging peroxides and nitric oxide.


ABSTRACT: Peroxiredoxins (Prxs) are ubiquitous cysteine-based peroxidase enzymes. Recently, a new type of Prx, VvPrx3, was identified in the pathogenic bacterium Vibrio vulnificus as being important for survival in macrophages. It employs only one catalytic cysteine residue to decompose peroxides. Here, crystal structures of VvPrx3 representing its reduced and oxidized states have been determined, together with an H2O2-bound structure, at high resolution. The crystal structure representing the reduced Prx3 showed a typical dimeric interface, called the A-type interface. However, VvPrx3 forms an oligomeric interface mediated by a disulfide bond between two catalytic cysteine residues from two adjacent dimers, which differs from the doughnut-like oligomers that appear in most Prxs. Subsequent biochemical studies showed that this disulfide bond was induced by treatment with nitric oxide (NO) as well as with peroxides. Consistently, NO treatment induced expression of the prx3 gene in V. vulnificus, and VvPrx3 was crucial for the survival of bacteria in the presence of NO. Taken together, the function and mechanism of VvPrx3 in scavenging peroxides and NO stress via oligomerization are proposed. These findings contribute to the understanding of the diverse functions of Prxs during pathogenic processes at the molecular level.

SUBMITTER: Ahn J 

PROVIDER: S-EPMC5755580 | biostudies-literature | 2018 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Crystal structure of peroxiredoxin 3 from <i>Vibrio vulnificus</i> and its implications for scavenging peroxides and nitric oxide.

Ahn Jinsook J   Jang Kyung Ku KK   Jo Inseong I   Nurhasni Hasan H   Lim Jong Gyu JG   Yoo Jin-Wook JW   Choi Sang Ho SH   Ha Nam-Chul NC  

IUCrJ 20180101 Pt 1


Peroxiredoxins (Prxs) are ubiquitous cysteine-based peroxidase enzymes. Recently, a new type of Prx, <i>Vv</i>Prx3, was identified in the pathogenic bacterium <i>Vibrio vulnificus</i> as being important for survival in macrophages. It employs only one catalytic cysteine residue to decompose peroxides. Here, crystal structures of <i>Vv</i>Prx3 representing its reduced and oxidized states have been determined, together with an H<sub>2</sub>O<sub>2</sub>-bound structure, at high resolution. The cry  ...[more]

Similar Datasets

| S-EPMC6768983 | biostudies-literature
2018-06-12 | GSE115553 | GEO
| S-EPMC6392066 | biostudies-literature
| S-EPMC5424276 | biostudies-literature
2010-03-01 | GSE15522 | GEO
| S-EPMC5738090 | biostudies-literature
| S-EPMC2859563 | biostudies-literature
2010-05-06 | E-GEOD-15522 | biostudies-arrayexpress
| S-EPMC8175989 | biostudies-literature
| S-EPMC4965554 | biostudies-literature