Unknown

Dataset Information

0

Stability and anisotropy of (FexNi1-x)2O under high pressure and implications in Earth's and super-Earths' core.


ABSTRACT: Oxygen is thought to be an important light element in Earth's core but the amount of oxygen in Earth's core remains elusive. In addition, iron-rich iron oxides are of great interest and significance in the field of geoscience and condensed matter physics. Here, static calculations based on density functional theory demonstrate that I4/mmm-Fe2O is dynamically and mechanically stable and becomes energetically favorable with respect to the assemblage of hcp-Fe and [Formula: see text]-FeO above 270?GPa, which indicates that I4/mmm-Fe2O can be a strong candidate phase for stable iron-rich iron oxides at high pressure, perhaps even at high temperature. The elasticity and anisotropy of I4/mmm-(FexNi1-x)2O at high pressures are also determined. Based on these results, we have derived the upper limit of oxygen to be 4.3?wt% in Earth's lower outer core. On the other hand, I4/mmm-(FexNi1-x)2O with high AV S is likely to exist in a super-Earth's or an ocean planet's solid core causing the locally seismic heterogeneity. Our results not only give some clues to explore and synthesize novel iron-rich iron oxides but also shed light on the fundamental information of oxygen in the planetary core.

SUBMITTER: Huang S 

PROVIDER: S-EPMC5762755 | biostudies-literature | 2018 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Stability and anisotropy of (Fe<sub>x</sub>Ni<sub>1-x</sub>)<sub>2</sub>O under high pressure and implications in Earth's and super-Earths' core.

Huang Shengxuan S   Wu Xiang X   Qin Shan S  

Scientific reports 20180110 1


Oxygen is thought to be an important light element in Earth's core but the amount of oxygen in Earth's core remains elusive. In addition, iron-rich iron oxides are of great interest and significance in the field of geoscience and condensed matter physics. Here, static calculations based on density functional theory demonstrate that I4/mmm-Fe<sub>2</sub>O is dynamically and mechanically stable and becomes energetically favorable with respect to the assemblage of hcp-Fe and [Formula: see text]-FeO  ...[more]

Similar Datasets

| S-EPMC4876395 | biostudies-literature
| S-EPMC9200858 | biostudies-literature
| S-EPMC4831017 | biostudies-literature
| S-EPMC1890464 | biostudies-literature
| 2159991 | ecrin-mdr-crc
| S-EPMC7823553 | biostudies-literature
| S-EPMC6472509 | biostudies-literature
| S-EPMC6155165 | biostudies-other
| S-EPMC10075969 | biostudies-literature
| S-EPMC7335046 | biostudies-literature