Unknown

Dataset Information

0

Cyclic Peptides to Improve Delivery and Exon Skipping of Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy.


ABSTRACT: Duchenne muscular dystrophy (DMD) is a severe, progressive muscle wasting disorder caused by reading frame disrupting mutations in the DMD gene. Exon skipping is a therapeutic approach for DMD. It employs antisense oligonucleotides (AONs) to restore the disrupted open reading frame, allowing the production of shorter, but partly functional dystrophin protein as seen in less severely affected Becker muscular dystrophy patients. To be effective, AONs need to be delivered and effectively taken up by the target cells, which can be accomplished by the conjugation of tissue-homing peptides. We performed phage display screens using a cyclic peptide library combined with next generation sequencing analyses to identify candidate muscle-homing peptides. Conjugation of the lead peptide to 2'-O-methyl phosphorothioate AONs enabled a significant, 2-fold increase in delivery and exon skipping in all analyzed skeletal and cardiac muscle of mdx mice and appeared well tolerated. While selected as a muscle-homing peptide, uptake was increased in liver and kidney as well. The homing capacity of the peptide may have been overruled by the natural biodistribution of the AON. Nonetheless, our results suggest that the identified peptide has the potential to facilitate delivery of AONs and perhaps other compounds to skeletal and cardiac muscle.

SUBMITTER: Jirka SMG 

PROVIDER: S-EPMC5763161 | biostudies-literature | 2018 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cyclic Peptides to Improve Delivery and Exon Skipping of Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy.

Jirka Silvana M G SMG   't Hoen Peter A C PAC   Diaz Parillas Valeriano V   Tanganyika-de Winter Christa L CL   Verheul Ruurd C RC   Aguilera Begona B   de Visser Peter C PC   Aartsma-Rus Annemieke M AM  

Molecular therapy : the journal of the American Society of Gene Therapy 20171012 1


Duchenne muscular dystrophy (DMD) is a severe, progressive muscle wasting disorder caused by reading frame disrupting mutations in the DMD gene. Exon skipping is a therapeutic approach for DMD. It employs antisense oligonucleotides (AONs) to restore the disrupted open reading frame, allowing the production of shorter, but partly functional dystrophin protein as seen in less severely affected Becker muscular dystrophy patients. To be effective, AONs need to be delivered and effectively taken up b  ...[more]

Similar Datasets

| S-EPMC4217760 | biostudies-literature
| S-EPMC5014533 | biostudies-other
| S-EPMC3922138 | biostudies-literature
| S-EPMC6237414 | biostudies-literature
| S-EPMC8673534 | biostudies-literature
| S-EPMC6382160 | biostudies-literature
| S-EPMC5675502 | biostudies-literature
| S-EPMC8355726 | biostudies-literature
| S-EPMC5017733 | biostudies-literature
| S-EPMC9320322 | biostudies-literature