Unknown

Dataset Information

0

Identification of prognostic signature in cancer based on DNA methylation interaction network.


ABSTRACT: BACKGROUND:The identification of prognostic biomarkers for cancer patients is essential for cancer research. These days, DNA methylation has been proved to be associated with cancer prognosis. However, there are few methods which identify the prognostic markers based on DNA methylation data systematically, especially considering the interaction among DNA methylation sites. METHODS:In this paper, we first evaluated the stabilities of microRNA, mRNA, and DNA methylation data in prognosis of cancer. After that, a rank-based method was applied to construct a DNA methylation interaction network. In this network, nodes with the largest degrees (10% of all the nodes) were selected as hubs. Cox regression was applied to select the hubs as prognostic signature. In this prognostic signature, DNA methylation levels of each DNA methylation site are correlated with the outcomes of cancer patients. After obtaining these prognostic genes, we performed the survival analysis in the training group and the test group to verify the reliability of these genes. RESULTS:We applied our method in three cancers (ovarian cancer, breast cancer and Glioblastoma Multiforme). In all the three cancers, there are more common ones of prognostic genes selected from different samples in DNA methylation data, compared with gene expression data and miRNA expression data, which indicates the DNA methylation data may be more stable in cancer prognosis. Power-law distribution fitting suggests that the DNA methylation interaction networks are scale-free. And the hubs selected from the three networks are all enriched by cancer related pathways. The gene signatures were obtained for the three cancers respectively, and survival analysis shows they can distinguish the outcomes of tumor patients in both the training data sets and test data sets, which outperformed the control signatures. CONCLUSIONS:A computational method was proposed to construct DNA methylation interaction network and this network could be used to select prognostic signatures in cancer.

SUBMITTER: Hu WL 

PROVIDER: S-EPMC5763425 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification of prognostic signature in cancer based on DNA methylation interaction network.

Hu Wei-Lin WL   Zhou Xiong-Hui XH  

BMC medical genomics 20171221 Suppl 4


<h4>Background</h4>The identification of prognostic biomarkers for cancer patients is essential for cancer research. These days, DNA methylation has been proved to be associated with cancer prognosis. However, there are few methods which identify the prognostic markers based on DNA methylation data systematically, especially considering the interaction among DNA methylation sites.<h4>Methods</h4>In this paper, we first evaluated the stabilities of microRNA, mRNA, and DNA methylation data in prog  ...[more]

Similar Datasets

| S-EPMC6014658 | biostudies-literature
| S-EPMC8693898 | biostudies-literature
| S-EPMC8740190 | biostudies-literature
| S-EPMC7571836 | biostudies-literature
| S-EPMC8841402 | biostudies-literature
| S-EPMC8436924 | biostudies-literature
| S-EPMC9061945 | biostudies-literature
| S-EPMC6722866 | biostudies-other
| S-EPMC5896050 | biostudies-literature
| S-EPMC9569431 | biostudies-literature