Unknown

Dataset Information

0

Automated image analysis detects aging in clinical-grade mesenchymal stromal cell cultures.


ABSTRACT: BACKGROUND:Senescent cells are undesirable in cell therapy products due to reduced therapeutic activity and risk of aberrant cellular effects, and methods for assessing senescence are needed. Early-passage mesenchymal stromal cells (MSCs) are known to be small and spindle-shaped but become enlarged upon cell aging. Indeed, cell morphology is routinely evaluated during MSC production using subjective methods. We have therefore explored the possibility of utilizing automated imaging-based analysis of cell morphology in clinical cell manufacturing. METHODS:An imaging system was adopted for analyzing changes in cell morphology of bone marrow-derived MSCs during long-term culture. Cells taken from the cultures at the desired passages were plated at low density for imaging, representing morphological changes observed in the clinical-grade cultures. The manifestations of aging and onset of senescence were monitored by population doubling numbers, expression of p16INK4a and p21Cip1/Waf1, ?-galactosidase activity, and telomeric terminal restriction fragment analysis. RESULTS:Cell area was the most statistically significant and practical parameter for describing morphological changes, correlating with biochemical senescence markers. MSCs from passages 1 (p1) and 3 (p3) were remarkably uniform in size, with cell areas between 1800 and 2500 ?m2. At p5 the cells began to enlarge resulting in a 4.8-fold increase at p6-9 as compared to p1. The expression of p16INK4a and activity of ?-galactosidase had a strong correlation with the increase in cell area, whereas the expression of p21Cip1/Waf1 reached its maximum at the onset of growth arrest and subsequently decreased. Mean telomere length shortened at an apparently constant rate during culture, from 8.2?±?0.3 kbp at p1, reaching 6.08?±?0.6 kbp at senescence. CONCLUSIONS:Imaging analysis of cell morphology is a useful tool for evaluating aging in cell cultures throughout the lifespan of MSCs. Our findings suggest that imaging analysis can reproducibly detect aging-related changes in cell morphology in MSC cultures. These findings suggest that cell morphology is still a supreme measure of cell quality and may be utilized to develop new noninvasive imaging-based methods to screen and quantitate aging in clinical-grade cell cultures.

SUBMITTER: Oja S 

PROVIDER: S-EPMC5763576 | biostudies-literature | 2018 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Automated image analysis detects aging in clinical-grade mesenchymal stromal cell cultures.

Oja S S   Komulainen P P   Penttilä A A   Nystedt J J   Korhonen M M  

Stem cell research & therapy 20180110 1


<h4>Background</h4>Senescent cells are undesirable in cell therapy products due to reduced therapeutic activity and risk of aberrant cellular effects, and methods for assessing senescence are needed. Early-passage mesenchymal stromal cells (MSCs) are known to be small and spindle-shaped but become enlarged upon cell aging. Indeed, cell morphology is routinely evaluated during MSC production using subjective methods. We have therefore explored the possibility of utilizing automated imaging-based  ...[more]

Similar Datasets

| S-EPMC6201632 | biostudies-literature
| S-EPMC7072652 | biostudies-literature
| S-EPMC10835001 | biostudies-literature
| S-EPMC8363910 | biostudies-literature
| S-EPMC9137136 | biostudies-literature
| S-EPMC5791082 | biostudies-literature
| S-EPMC7414268 | biostudies-literature
| S-EPMC6657181 | biostudies-literature
| S-EPMC10691861 | biostudies-literature
| S-EPMC4014501 | biostudies-other