Unknown

Dataset Information

0

Temperature-induced surface reconstruction and interface structure evolution on ligament of nanoporous copper.


ABSTRACT: Micromorphology and atomic arrangement on ligament surface of nanoporous metals play a vital role in maintaining the structural stability, adjusting the reaction interface and endowing the functionality. Here we offer an instructive scientific understanding for temperature-induced surface reconstruction and interface structure evolution on ligament of nanoporous copper (NPC) based on systematically experimental observations and theoretical calculations. The results show that with dealloying temperature increasing, ligament surface micromorphology of NPC evolves from smooth to irregularity and to uniformly compressed semisphere, and finally to dispersed single-crystal nanoparticles accompanying with significant changes of interface structure from coherence to semi-coherence and to noncoherence. It can guide us to impart multifunctionality and enhanced reaction activity to porous materials just through surface self-modification of homogeneous atoms rather than external invasion of heteroatoms that may bring about unexpected ill effects, such as shortened operation life owing to poisoning.

SUBMITTER: Liu W 

PROVIDER: S-EPMC5765166 | biostudies-literature | 2018 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Temperature-induced surface reconstruction and interface structure evolution on ligament of nanoporous copper.

Liu Wenbo W   Cheng Peng P   Yan Jiazhen J   Li Ning N   Shi Sanqiang S   Zhang Shichao S  

Scientific reports 20180111 1


Micromorphology and atomic arrangement on ligament surface of nanoporous metals play a vital role in maintaining the structural stability, adjusting the reaction interface and endowing the functionality. Here we offer an instructive scientific understanding for temperature-induced surface reconstruction and interface structure evolution on ligament of nanoporous copper (NPC) based on systematically experimental observations and theoretical calculations. The results show that with dealloying temp  ...[more]

Similar Datasets

2022-06-13 | GSE171480 | GEO
| S-EPMC7451438 | biostudies-literature
2022-06-13 | GSE171465 | GEO
2022-06-13 | GSE171479 | GEO
| S-EPMC4879665 | biostudies-literature
| S-EPMC4517587 | biostudies-literature
| S-EPMC4677650 | biostudies-literature
| S-EPMC6112256 | biostudies-literature
| S-EPMC7053377 | biostudies-literature
| S-EPMC7327079 | biostudies-literature