Abnormal cannabidiol confers cardioprotection in diabetic rats independent of glycemic control.
Ontology highlight
ABSTRACT: Chronic GPR18 activation by its agonist abnormal cannabidiol (trans-4-[3-methyl-6-(1-methylethenyl)-2-cyclohexen-1-yl]-5-pentyl-1,3-benzenediol; abn-cbd) improves myocardial redox status and function in healthy rats. Here, we investigated the ability of abn-cbd to alleviate diabetes-evoked cardiovascular pathology and the contribution of GPR18 to this effect. Four weeks after diabetes induction by streptozotocin (STZ, 55mg/kg; i.p), male Wistar rats received abn-cbd, the GPR18 antagonist (1,3-dimethoxy-5-methyl-2-[(1R,6R)-3-methyl-6-(1-methylethenyl)-2-,cyclohexen-1-yl]benzene;O-1918), their combination (100µg/kg/day, i.p, each) or their vehicle for 2 weeks. Abn-cbd had no effect on diabetes-evoked cardiac hypertrophy or impaired glycemic control (hyperglycemia and hypoinsulinemia), but alleviated the associated reductions in left ventricular (LV) contractility (dP/dtmax) and relaxation (dP/dtmin) indices, and the increases in LV end diastolic pressure (LVEDP) and cardiac vagal dominance. Abn-cbd also reversed myocardial oxidative stress by restoring circulating and cardiac nitric oxide (NO) and adiponectin (ADN) levels and enhancing GPR18 expression and phosphorylation of Akt, ERK1/2 and eNOS in diabetic rats' hearts. Concurrent GPR18 blockade (O-1918) abrogated all favorable effects of abn-cbd in diabetic rats. Collectively, the current findings present evidence for abn-cbd alleviation of diabetes-evoked cardiovascular anomalies likely via GPR18 dependent restoration of cardiac adiponectin-Akt-eNOS signaling and the diminution of myocardial oxidative stress.
SUBMITTER: Matouk AI
PROVIDER: S-EPMC5767137 | biostudies-literature | 2018 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA