Unknown

Dataset Information

0

Additive Effects of Quorum Sensing Anti-Activators on Pseudomonas aeruginosa Virulence Traits and Transcriptome.


ABSTRACT: In the opportunistic pathogen Pseudomonas aeruginosa, quorum sensing (QS) via acyl-homoserine lactone (AHL) signals coordinates virulence gene expression. AHL signals must reach a critical threshold before enough is bound by cognate regulators LasR and RhlR to drive transcription of target genes. In addition, three anti-activator proteins, QteE, QscR, and QslA, sequester QS regulators to increase the threshold for induction and delay expression of QS target genes. It remains unclear how multiple anti-activators work together to achieve the quorum threshold. Here, we employed a combination of mutational, kinetic, phenotypic, and transcriptomic analysis to examine regulatory effects and interactions of the three distinct anti-activators. We observed combinatorial, additive effects on QS gene expression. As measured by reporter gene fusion, individual deletion of each anti-activator gene increased lasB expression and QS-controlled virulence factor production. Deletion of qslA in combination with the deletion of any other anti-activator gene resulted in the greatest increase and earliest activation of lasB gene expression. Western analysis revealed that relative increases in soluble LasR in anti-activator mutants correlate with increased lasB expression and QS-controlled virulence factor production. RNA-seq of the previously uncharacterized QslA and QteE regulons revealed overlapping, yet distinct groups of differentially expressed genes. Simultaneous inactivation of qteE and qslA had the largest effect on gene expression with 999 genes induced and 798 genes repressed in the double mutant vs. wild-type. We found that LasR and RhlR-activated QS genes formed a subset of the genes induced in the qteE, qslA, and double mutant. The activation of almost all of these QS genes was advanced from stationary phase to log phase in the qteE qslA double mutant. Taken together, our results identify additive effects of anti-activation on QS gene expression, likely via LasR and RhlR, but do not rule out QS-independent effects.

SUBMITTER: Asfahl KL 

PROVIDER: S-EPMC5767178 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

Additive Effects of Quorum Sensing Anti-Activators on <i>Pseudomonas aeruginosa</i> Virulence Traits and Transcriptome.

Asfahl Kyle L KL   Schuster Martin M  

Frontiers in microbiology 20180109


In the opportunistic pathogen <i>Pseudomonas aeruginosa</i>, quorum sensing (QS) via acyl-homoserine lactone (AHL) signals coordinates virulence gene expression. AHL signals must reach a critical threshold before enough is bound by cognate regulators LasR and RhlR to drive transcription of target genes. In addition, three anti-activator proteins, QteE, QscR, and QslA, sequester QS regulators to increase the threshold for induction and delay expression of QS target genes. It remains unclear how m  ...[more]

Similar Datasets

2017-12-06 | GSE107758 | GEO
| PRJNA421309 | ENA
| S-EPMC5526841 | biostudies-literature
| S-EPMC2865528 | biostudies-literature
| S-EPMC3816427 | biostudies-literature
| S-EPMC7566558 | biostudies-literature
| S-EPMC10680813 | biostudies-literature
| S-EPMC4977528 | biostudies-literature
| S-EPMC3923755 | biostudies-literature
| S-EPMC11208154 | biostudies-literature