Unknown

Dataset Information

0

Characterization of culturable yeast species associating with whole crop corn and total mixed ration silage.


ABSTRACT: OBJECTIVE:This study investigated the association of yeast species with improved aerobic stability of total mixed ration (TMR) silages with prolonged ensiling, and clarified the characteristics of yeast species and their role during aerobic deterioration. METHODS:Whole crop corn (WCC) silages and TMR silages formulated with WCC were ensiled for 7, 14, 28, and 56 d and used for an aerobic stability test. Predominant yeast species were isolated from different periods and identified by sequencing analyses of the 26S rRNA gene D1/D2 domain. Characteristics (assimilation and tolerance) of the yeast species and their role during aerobic deterioration were investigated. RESULTS:In addition to species of Candida glabrata and Pichia kudriavzevii (P. kudriavzevii) previously isolated in WCC and TMR, Pichia manshurica (P. manshurica), Candida ethanolica (C. ethanolica), and Zygosaccharomyces bailii (Z. bailii) isolated at great frequency during deterioration, were capable of assimilating lactic or acetic acid and tolerant to acetic acid and might function more in deteriorating TMR silages at early fermentation (7 d and 14 d). With ensiling prolonged to 28 d, silages became more (p<0.01) stable when exposed to air, coinciding with the inhibition of yeast to below the detection limit. Species of P. manshurica that were predominant in deteriorating WCC silages were not detectable in TMR silages. In addition, the predominant yeast species of Z. bailii in deteriorating TMR silages at later fermentation (28 d and 56 d) were not observed in both WCC and WCC silages. CONCLUSION:The inhibition of yeasts, particularly P. kudriavzevii, probably account for the improved aerobic stability of TMR silages at later fermentation. Fewer species seemed to be involved in aerobic deterioration of silages at later fermentation and Z. bailii was most likely to initiate the aerobic deterioration of TMR silages at later fermentation. The use of WCC in TMR might not influence the predominant yeast species during aerobic deterioration of TMR silages.

SUBMITTER: Wang H 

PROVIDER: S-EPMC5767501 | biostudies-literature | 2018 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Characterization of culturable yeast species associating with whole crop corn and total mixed ration silage.

Wang Huili H   Hao Wei W   Ning Tingting T   Zheng Mingli M   Xu Chuncheng C  

Asian-Australasian journal of animal sciences 20170626 2


<h4>Objective</h4>This study investigated the association of yeast species with improved aerobic stability of total mixed ration (TMR) silages with prolonged ensiling, and clarified the characteristics of yeast species and their role during aerobic deterioration.<h4>Methods</h4>Whole crop corn (WCC) silages and TMR silages formulated with WCC were ensiled for 7, 14, 28, and 56 d and used for an aerobic stability test. Predominant yeast species were isolated from different periods and identified  ...[more]

Similar Datasets

| S-EPMC7922426 | biostudies-literature
| S-EPMC6352740 | biostudies-literature
| S-EPMC7928353 | biostudies-literature
| S-EPMC5205603 | biostudies-literature
| S-EPMC6447279 | biostudies-literature
2023-09-13 | GSE241081 | GEO
| S-EPMC6946985 | biostudies-literature
| S-EPMC7285301 | biostudies-literature
| PRJNA814208 | ENA
| PRJNA560459 | ENA