Unknown

Dataset Information

0

Identification of novel genes in aging osteoblasts using next-generation sequencing and bioinformatics.


ABSTRACT: During the aging process, impaired osteoblastic function is one key factor of imbalanced bone formation and age-related bone loss. The aim of this study is to explore the differentially expressed genes in normal and aged osteoblasts and to identify genes potentially involved in age-related alteration in bone physiology. Based on next generation sequencing and bioinformatics analysis, 12 differentially expressed microRNAs and 22 differentially expressed genes were identified. Up-regulation of miR-204-5p was validated in an array of osteoporotic hip fracture in the Gene Expression Omnibus database (GSE74209). The putative targets for miR-204-5p were Kruppel-like factor 7 (KLF7) and SRY-box 11 (SOX11). Ingenuity Pathway Analysis identified SOX11, involved in osteoarthritis pathway and differentiation of osteoblasts, together with miR-204-5p, a potential upstream regulator, suggesting the critical role of miR-204-5p-SOX11 regulation in the aging process of human bones. In addition, as semaphorin 3A (SEMA3A) and ephrin type-A receptor 5 (EPHA5) were involved in nervous system related biological functions, we postulated a potential linkage between SEMA3A, EPHA5 and development of neurogenic heterotopic ossification. Our findings implicate new candidate genes in the diagnosis of geriatric musculoskeletal disorders, and provide novel insights that may contribute to the elaboration of new biomarkers for neurogenic heterotopic ossification.

SUBMITTER: Chen YJ 

PROVIDER: S-EPMC5768349 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification of novel genes in aging osteoblasts using next-generation sequencing and bioinformatics.

Chen Yi-Jen YJ   Chang Wei-An WA   Huang Ming-Shyan MS   Chen Chia-Hsin CH   Wang Kuan-Yuan KY   Hsu Ya-Ling YL   Kuo Po-Lin PL  

Oncotarget 20171128 69


During the aging process, impaired osteoblastic function is one key factor of imbalanced bone formation and age-related bone loss. The aim of this study is to explore the differentially expressed genes in normal and aged osteoblasts and to identify genes potentially involved in age-related alteration in bone physiology. Based on next generation sequencing and bioinformatics analysis, 12 differentially expressed microRNAs and 22 differentially expressed genes were identified. Up-regulation of miR  ...[more]

Similar Datasets

| S-EPMC6743272 | biostudies-literature
| S-EPMC5713364 | biostudies-literature
| S-EPMC6192719 | biostudies-literature
| S-EPMC6332486 | biostudies-literature
| S-EPMC5739604 | biostudies-literature
| S-EPMC5669919 | biostudies-literature
| S-EPMC8086570 | biostudies-literature
| S-EPMC4105452 | biostudies-other
| S-EPMC4351942 | biostudies-literature
| S-EPMC5466385 | biostudies-literature