Unknown

Dataset Information

0

Targeting AR Variant-Coactivator Interactions to Exploit Prostate Cancer Vulnerabilities.


ABSTRACT: Castration-resistant prostate cancer (CRPC) progresses rapidly and is incurable. Constitutively active androgen receptor splice variants (AR-Vs) represent a well-established mechanism of therapeutic resistance and disease progression. These variants lack the AR ligand-binding domain and, as such, are not inhibited by androgen deprivation therapy (ADT), which is the standard systemic approach for advanced prostate cancer. Signaling by AR-Vs, including the clinically relevant AR-V7, is augmented by Vav3, an established AR coactivator in CRPC. Using mutational and biochemical studies, we demonstrated that the Vav3 Diffuse B-cell lymphoma homology (DH) domain interacted with the N-terminal region of AR-V7 (and full length AR). Expression of the Vav3 DH domain disrupted Vav3 interaction with and enhancement of AR-V7 activity. The Vav3 DH domain also disrupted AR-V7 interaction with other AR coactivators: Src1 and Vav2, which are overexpressed in PC. This Vav3 domain was used in proof-of-concept studies to evaluate the effects of disrupting the interaction between AR-V7 and its coactivators on CRPC cells. This disruption decreased CRPC cell proliferation and anchorage-independent growth, caused increased apoptosis, decreased migration, and resulted in the acquisition of morphological changes associated with a less aggressive phenotype. While disrupting the interaction between FL-AR and its coactivators decreased N-C terminal interaction, disrupting the interaction of AR-V7 with its coactivators decreased AR-V7 nuclear levels.Implications: This study demonstrates the potential therapeutic utility of inhibiting constitutively active AR-V signaling by disrupting coactivator binding. Such an approach is significant, as AR-Vs are emerging as important drivers of CRPC that are particularly recalcitrant to current therapies. Mol Cancer Res; 15(11); 1469-80. ©2017 AACR.

SUBMITTER: Magani F 

PROVIDER: S-EPMC5770277 | biostudies-literature | 2017 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Targeting AR Variant-Coactivator Interactions to Exploit Prostate Cancer Vulnerabilities.

Magani Fiorella F   Peacock Stephanie O SO   Rice Meghan A MA   Martinez Maria J MJ   Greene Ann M AM   Magani Pablo S PS   Lyles Rolando R   Weitz Jonathan R JR   Burnstein Kerry L KL  

Molecular cancer research : MCR 20170815 11


Castration-resistant prostate cancer (CRPC) progresses rapidly and is incurable. Constitutively active androgen receptor splice variants (AR-Vs) represent a well-established mechanism of therapeutic resistance and disease progression. These variants lack the AR ligand-binding domain and, as such, are not inhibited by androgen deprivation therapy (ADT), which is the standard systemic approach for advanced prostate cancer. Signaling by AR-Vs, including the clinically relevant AR-V7, is augmented b  ...[more]

Similar Datasets

| S-EPMC3947037 | biostudies-literature
| S-EPMC7940541 | biostudies-literature
| S-EPMC5960326 | biostudies-literature
| S-EPMC3769880 | biostudies-other
| S-EPMC5644285 | biostudies-literature
2014-03-27 | E-GEOD-56188 | biostudies-arrayexpress
| S-EPMC4647688 | biostudies-other
| S-EPMC5190055 | biostudies-literature
| S-EPMC7069092 | biostudies-literature
| S-EPMC5342806 | biostudies-literature