Unknown

Dataset Information

0

Effects of vitamin D on insulin resistance and myosteatosis in diet-induced obese mice.


ABSTRACT: Epidemiological studies pointed out to a strong association between vitamin D deficiency and type 2 diabetes prevalence. However, the role of vitamin D supplementation in the skeletal muscle, a tissue that play a crucial role in the maintenance of glucose homeostasis, has been scarcely investigated so far. On this basis, this study aimed to evaluate the effect of vitamin D supplementation in a murine model of diet-induced insulin resistance with particular attention to the effects evoked on the skeletal muscle. Male C57BL/6J mice (n = 40) were fed with a control or a High Fat-High Sugar (HFHS) diet for 4 months. Subsets of animals were treated for 2 months with vitamin D (7 ?g·kg-1, i.p. three times/week). HFHS diet induced body weight increase, hyperglycemia and impaired glucose tolerance. HFHS animals showed an impaired insulin signaling and a marked fat accumulation in the skeletal muscle. Vitamin D reduced body weight and improved systemic glucose tolerance. In addition, vitamin D restored the impaired muscle insulin signaling and reverted myosteatosis evoked by the diet. These effects were associated to decreased activation of NF-?B and lower levels of TNF-alpha. Consistently, a significantly decreased activation of the SCAP/SREBP lipogenic pathway and lower levels of CML protein adducts and RAGE expression were observed in skeletal muscle of animals treated with vitamin D. Collectively, these data indicate that vitamin D-induced selective inhibition of signaling pathways (including NF-?B, SCAP/SREBP and CML/RAGE cascades) within the skeletal muscle significantly contributed to the beneficial effects of vitamin D supplementation against diet-induced metabolic derangements.

SUBMITTER: Benetti E 

PROVIDER: S-EPMC5771572 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications


Epidemiological studies pointed out to a strong association between vitamin D deficiency and type 2 diabetes prevalence. However, the role of vitamin D supplementation in the skeletal muscle, a tissue that play a crucial role in the maintenance of glucose homeostasis, has been scarcely investigated so far. On this basis, this study aimed to evaluate the effect of vitamin D supplementation in a murine model of diet-induced insulin resistance with particular attention to the effects evoked on the  ...[more]

Similar Datasets

| S-EPMC6911300 | biostudies-literature
| S-EPMC4354928 | biostudies-literature
| S-EPMC3581198 | biostudies-literature
| S-EPMC4767368 | biostudies-literature
| S-EPMC6063897 | biostudies-literature
| S-EPMC8511530 | biostudies-literature
| S-EPMC8791219 | biostudies-literature
| S-EPMC4026430 | biostudies-literature
| S-EPMC6724050 | biostudies-literature
| S-EPMC5766630 | biostudies-literature