Unknown

Dataset Information

0

Large-scale semi-arid afforestation can enhance precipitation and carbon sequestration potential.


ABSTRACT: Afforestation is an important approach to mitigate global warming. Its complex interactions with the climate system, however, makes it controversial. Afforestation is expected to be effective in the tropics where biogeochemical and biogeophysical effects act in concert; however, its potential in the large semi-arid regions remains insufficiently explored. Here, we use a Global Climate Model to provide a process-based demonstration that implementing measured characteristics of a successful semi-arid afforestation system (2000?ha, ~300?mm mean annual precipitation) over large areas (~200?million ha) of similar precipitation levels in the Sahel and North Australia leads to the weakening and shifting of regional low-level jets, enhancing moisture penetration and precipitation (+0.8?±?0.1?mm d-1 over the Sahel and +0.4?±?0.1?mm d-1 over North Australia), influencing areas larger than the original afforestation. These effects are associated with increasing root depth and surface roughness and with decreasing albedo. This results in enhanced evapotranspiration, surface cooling and the modification of the latitudinal temperature gradient. It is estimated that the carbon sequestration potential of such large-scale semi-arid afforestation can be on the order of ~10% of the global carbon sink of the land biosphere and would overwhelm any biogeophysical warming effects within ~6 years.

SUBMITTER: Yosef G 

PROVIDER: S-EPMC5772497 | biostudies-literature | 2018 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Large-scale semi-arid afforestation can enhance precipitation and carbon sequestration potential.

Yosef Gil G   Walko Robert R   Avisar Roni R   Tatarinov Fedor F   Rotenberg Eyal E   Yakir Dan D  

Scientific reports 20180117 1


Afforestation is an important approach to mitigate global warming. Its complex interactions with the climate system, however, makes it controversial. Afforestation is expected to be effective in the tropics where biogeochemical and biogeophysical effects act in concert; however, its potential in the large semi-arid regions remains insufficiently explored. Here, we use a Global Climate Model to provide a process-based demonstration that implementing measured characteristics of a successful semi-a  ...[more]

Similar Datasets

| S-EPMC7485101 | biostudies-literature
| S-EPMC6580272 | biostudies-literature
| S-EPMC6598672 | biostudies-literature
| S-EPMC4338072 | biostudies-literature
| S-EPMC3281109 | biostudies-other
| S-EPMC7536243 | biostudies-literature
| S-EPMC4738422 | biostudies-literature
| S-EPMC7863787 | biostudies-literature
| S-EPMC8969558 | biostudies-literature
| S-EPMC5942916 | biostudies-literature