Unknown

Dataset Information

0

Higher sequence diversity in the vaginal tract than in blood at early HIV-1 infection.


ABSTRACT: In the majority of cases, human immunodeficiency virus type 1 (HIV-1) infection is transmitted through sexual intercourse. A single founder virus in the blood of the newly infected donor emerges from a genetic bottleneck, while in rarer instances multiple viruses are responsible for systemic infection. We sought to characterize the sequence diversity at early infection, between two distinct anatomical sites; the female reproductive tract vs. systemic compartment. We recruited 72 women from Uganda and Zimbabwe within seven months of HIV-1 infection. Using next generation deep sequencing, we analyzed the total genetic diversity within the C2-V3-C3 envelope region of HIV-1 isolated from the female genital tract at early infection and compared this to the diversity of HIV-1 in plasma. We then compared intra-patient viral diversity in matched cervical and blood samples with three or seven months post infection. Genetic analysis of the C2-V3-C3 region of HIV-1 env revealed that early HIV-1 isolates within blood displayed a more homogeneous genotype (mean 1.67 clones, range 1-5 clones) than clones in the female genital tract (mean 5.7 clones, range 3-10 clones) (p<0.0001). The higher env diversity observed within the genital tract compared to plasma was independent of HIV-1 subtype (A, C and D). Our analysis of early mucosal infections in women revealed high HIV-1 diversity in the vaginal tract but few transmitted clones in the blood. These novel in vivo finding suggest a possible mucosal sieve effect, leading to the establishment of a homogenous systemic infection.

SUBMITTER: Klein K 

PROVIDER: S-EPMC5773221 | biostudies-literature | 2018 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications


In the majority of cases, human immunodeficiency virus type 1 (HIV-1) infection is transmitted through sexual intercourse. A single founder virus in the blood of the newly infected donor emerges from a genetic bottleneck, while in rarer instances multiple viruses are responsible for systemic infection. We sought to characterize the sequence diversity at early infection, between two distinct anatomical sites; the female reproductive tract vs. systemic compartment. We recruited 72 women from Ugand  ...[more]

Similar Datasets

| S-EPMC3723399 | biostudies-literature
| S-EPMC6321908 | biostudies-literature
| S-EPMC5140710 | biostudies-literature
| S-EPMC5638550 | biostudies-literature
| S-EPMC3039048 | biostudies-literature
| S-EPMC6588551 | biostudies-literature
| S-EPMC2949729 | biostudies-literature
| S-EPMC5242325 | biostudies-literature
| S-EPMC7644686 | biostudies-literature
| S-EPMC3797116 | biostudies-literature