Unknown

Dataset Information

0

Ormeloxifene Suppresses Prostate Tumor Growth and Metastatic Phenotypes via Inhibition of Oncogenic ?-catenin Signaling and EMT Progression.


ABSTRACT: Ormeloxifene is a clinically approved selective estrogen receptor modulator, which has also shown excellent anticancer activity, thus it can be an ideal repurposing pharmacophore. Herein, we report therapeutic effects of ormeloxifene on prostate cancer and elucidate a novel molecular mechanism of its anticancer activity. Ormeloxifene treatment inhibited epithelial-to-mesenchymal transition (EMT) process as evident by repression of N-cadherin, Slug, Snail, vimentin, MMPs (MMP2 and MMP3), ?-catenin/TCF-4 transcriptional activity, and induced the expression of pGSK3?. In molecular docking analysis, ormeloxifene showed proficient docking with ?-catenin and GSK3?. In addition, ormeloxifene induced apoptosis, inhibited growth and metastatic potential of prostate cancer cells and arrested cell cycle in G0-G1 phase via modulation of cell-cycle regulatory proteins (inhibition of Mcl-1, cyclin D1, and CDK4 and induction of p21 and p27). In functional assays, ormeloxifene remarkably reduced tumorigenic, migratory, and invasive potential of prostate cancer cells. In addition, ormeloxifene treatment significantly (P < 0.01) regressed the prostate tumor growth in the xenograft mouse model while administered through intraperitoneal route (250 ?g/mouse, three times a week). These molecular effects of ormeloxifene were also observed in excised tumor tissues as shown by immunohistochemistry analysis. Our results, for the first time, demonstrate repurposing potential of ormeloxifene as an anticancer drug for the treatment of advanced stage metastatic prostate cancer through a novel molecular mechanism involving ?-catenin and EMT pathway. Mol Cancer Ther; 16(10); 2267-80. ©2017 AACR.

SUBMITTER: Hafeez BB 

PROVIDER: S-EPMC5774234 | biostudies-literature | 2017 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ormeloxifene Suppresses Prostate Tumor Growth and Metastatic Phenotypes via Inhibition of Oncogenic β-catenin Signaling and EMT Progression.

Hafeez Bilal Bin BB   Ganju Aditya A   Sikander Mohammed M   Kashyap Vivek K VK   Hafeez Zubair Bin ZB   Chauhan Neeraj N   Malik Shabnam S   Massey Andrew E AE   Tripathi Manish K MK   Halaweish Fathi T FT   Zafar Nadeem N   Singh Man M MM   Yallapu Murali M MM   Chauhan Subhash C SC   Jaggi Meena M  

Molecular cancer therapeutics 20170614 10


Ormeloxifene is a clinically approved selective estrogen receptor modulator, which has also shown excellent anticancer activity, thus it can be an ideal repurposing pharmacophore. Herein, we report therapeutic effects of ormeloxifene on prostate cancer and elucidate a novel molecular mechanism of its anticancer activity. Ormeloxifene treatment inhibited epithelial-to-mesenchymal transition (EMT) process as evident by repression of N-cadherin, Slug, Snail, vimentin, MMPs (MMP2 and MMP3), β-cateni  ...[more]

Similar Datasets

| S-EPMC3426544 | biostudies-literature
| S-EPMC7334067 | biostudies-literature
| S-EPMC8898706 | biostudies-literature
| S-EPMC10894327 | biostudies-literature
| S-EPMC10286338 | biostudies-literature
| S-EPMC6753380 | biostudies-literature
| S-EPMC5984676 | biostudies-literature
| S-EPMC4673254 | biostudies-literature
| S-EPMC4896852 | biostudies-literature
| S-EPMC3897473 | biostudies-literature