Temporal patterns of genetic variation in a salmon population undergoing rapid change in migration timing.
Ontology highlight
ABSTRACT: Though genetic diversity is necessary for population persistence in rapidly changing environments, little is known about how climate-warming influences patterns of intra-population genetic variation. For a pink salmon population experiencing increasing temperatures, we used temporal genetic data (microsatellite = 1993, 2001, 2009; allozyme = 1979, 1981, 1983) to quantify the genetic effective population size (Ne ) and genetic divergence due to differences in migration timing and to estimate whether these quantities have changed over time. We predicted that temporal trends toward earlier migration timing and a corresponding loss of phenotypic variation would decrease genetic divergence based on migration timing and Ne . We observed significant genetic divergence based on migration timing and genetic heterogeneity between early- and late-migrating fish. There was also some evidence for divergent selection between early- and late-migrating fish at circadian rhythm genes, but results varied over time. Estimates of Ne from multiple methods were large (>1200) and Ne /Nc generally exceeded 0.2. Despite shifts in migration timing and loss of phenotypic variation, there was no evidence for changes in within-population genetic divergence or Ne over the course of this study. These results suggest that in instances of population stability, genetic diversity may be resistant to climate-induced changes in migration timing.
SUBMITTER: Kovach RP
PROVIDER: S-EPMC5779130 | biostudies-literature | 2013 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA