Unknown

Dataset Information

0

Oxidation of 1-chloropyrene by human CYP1 family and CYP2A subfamily cytochrome P450 enzymes: catalytic roles of two CYP1B1 and five CYP2A13 allelic variants.


ABSTRACT: 1.?1-Chloropyrene, one of the major chlorinated polycyclic aromatic hydrocarbon contaminants, was incubated with human cytochrome P450 (P450 or CYP) enzymes including CYP1A1, 1A2, 1B1, 2A6, 2A13, 2B6, 2C9, 2D6, 2E1, 3A4 and 3A5. Catalytic differences in 1-chloropyrene oxidation by polymorphic two CYP1B1 and five CYP2A13 allelic variants were also examined. 2.?CYP1A1 oxidized 1-chloropyrene at the 6- and 8-positions more actively than at the 3-position, while both CYP1B1.1 and 1B1.3 preferentially catalyzed 6-hydroxylation. 3.?Five CYP2A13 allelic variants oxidized 8-hydroxylation much more than 6- and 3-hydroxylation, and the variant CYP2A13.3 was found to slowly catalyze these reactions with a lower kcat value than other CYP2A13.1 variants. 4.?CYP2A6 catalyzed 1-chloropyrene 6-hydroxylation at a higher rate than the CYP2A13 enzymes, but the rate was lower than the CYP1A1 and 1B1 variants. Other human P450 enzymes had low activities towards 1-chloropyrene. 5.?Molecular docking analysis suggested differences in the interaction of 1-chloropyrene with active sites of CYP1 and 2?A enzymes. In addition, a naturally occurring Thr134 insertion in CYP2A13.3 was found to affect the orientation of Asn297 in the I-helix in interacting with 1-chloropyrene (and also 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK) and caused changes in the active site of CYP2A13.3 as compared with CYP2A13.1.

SUBMITTER: Shimada T 

PROVIDER: S-EPMC5780263 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Oxidation of 1-chloropyrene by human CYP1 family and CYP2A subfamily cytochrome P450 enzymes: catalytic roles of two CYP1B1 and five CYP2A13 allelic variants.

Shimada Tsutomu T   Murayama Norie N   Kakimoto Kensaku K   Takenaka Shigeo S   Lim Young-Ran YR   Yeom Sora S   Kim Donghak D   Yamazaki Hiroshi H   Guengerich F Peter FP   Komori Masayuki M  

Xenobiotica; the fate of foreign compounds in biological systems 20170721 6


1. 1-Chloropyrene, one of the major chlorinated polycyclic aromatic hydrocarbon contaminants, was incubated with human cytochrome P450 (P450 or CYP) enzymes including CYP1A1, 1A2, 1B1, 2A6, 2A13, 2B6, 2C9, 2D6, 2E1, 3A4 and 3A5. Catalytic differences in 1-chloropyrene oxidation by polymorphic two CYP1B1 and five CYP2A13 allelic variants were also examined. 2. CYP1A1 oxidized 1-chloropyrene at the 6- and 8-positions more actively than at the 3-position, while both CYP1B1.1 and 1B1.3 preferentiall  ...[more]

Similar Datasets

| PRJEB38781 | ENA
| S-EPMC3608456 | biostudies-literature
| S-EPMC4755721 | biostudies-literature
| S-EPMC6430112 | biostudies-literature
2022-05-23 | GSE158715 | GEO
| S-EPMC2566308 | biostudies-literature
| S-EPMC4174004 | biostudies-literature
| S-EPMC4215225 | biostudies-literature
| S-EPMC3128182 | biostudies-literature
| S-EPMC8657965 | biostudies-literature