Unknown

Dataset Information

0

Generalizing the Network Scale-Up Method: A New Estimator for the Size of Hidden Populations.


ABSTRACT: The network scale-up method enables researchers to estimate the size of hidden populations, such as drug injectors and sex workers, using sampled social network data. The basic scale-up estimator offers advantages over other size estimation techniques, but it depends on problematic modeling assumptions. We propose a new generalized scale-up estimator that can be used in settings with non-random social mixing and imperfect awareness about membership in the hidden population. Further, the new estimator can be used when data are collected via complex sample designs and from incomplete sampling frames. However, the generalized scale-up estimator also requires data from two samples: one from the frame population and one from the hidden population. In some situations these data from the hidden population can be collected by adding a small number of questions to already planned studies. For other situations, we develop interpretable adjustment factors that can be applied to the basic scale-up estimator. We conclude with practical recommendations for the design and analysis of future studies.

SUBMITTER: Feehan DM 

PROVIDER: S-EPMC5783650 | biostudies-literature | 2016 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Generalizing the Network Scale-Up Method: A New Estimator for the Size of Hidden Populations.

Feehan Dennis M DM   Salganik Matthew J MJ  

Sociological methodology 20160801 1


The network scale-up method enables researchers to estimate the size of hidden populations, such as drug injectors and sex workers, using sampled social network data. The basic scale-up estimator offers advantages over other size estimation techniques, but it depends on problematic modeling assumptions. We propose a new generalized scale-up estimator that can be used in settings with non-random social mixing and imperfect awareness about membership in the hidden population. Further, the new esti  ...[more]

Similar Datasets

| S-EPMC11000406 | biostudies-literature
| S-EPMC10665021 | biostudies-literature
| S-EPMC10015632 | biostudies-literature
| S-EPMC7731992 | biostudies-literature
| S-EPMC7812829 | biostudies-literature
| S-EPMC4832053 | biostudies-literature
2023-09-11 | GSE226539 | GEO
| S-EPMC5161363 | biostudies-literature
| S-EPMC7896036 | biostudies-literature
| S-EPMC6392194 | biostudies-literature