Unknown

Dataset Information

0

Identification of a potent MAR element from the human genome and assessment of its activity in stably transfected CHO cells.


ABSTRACT: Low-level and unstable transgene expression are common issues using the CHO cell expression system. Matrix attachment regions (MARs) enhance transgene expression levels, but additional research is needed to improve their function and to determine their mechanism of action. MAR-6 from CHO chromosomes actively mediates high and consistent gene expression. In this study, we compared the effects of two new MARs and MAR-6 on transgene expression in recombinant CHO cells and found one potent MAR element that can significantly increase transgene expression. Two MARs, including the human CSP-B MAR element and DHFR intron MAR element from CHO cells, were cloned and inserted downstream of the poly(A) site in a eukaryotic vector. The constructs were transfected into CHO cells, and the expression levels and stability of eGFP were detected by flow cytometry. The three MAR sequences can be ranked in terms of overall eGFP expression, in decreasing order, as follows: human CSP-B, DHFR intron MAR element and MAR-6. Additionally, as expected, the three MAR-containing vectors showed higher transfection efficiencies and transient transgene expression in comparison with those of the non-MAR-containing vector. Bioinformatics analysis indicated that the NFAT and VIBP elements within MAR sequences may contribute to the enhancement of eGFP expression. In conclusion, the human CSP-B MAR element can improve transgene expression and its effects may be related to the NFAT and VIBP elements.

SUBMITTER: Tian ZW 

PROVIDER: S-EPMC5783848 | biostudies-literature | 2018 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification of a potent MAR element from the human genome and assessment of its activity in stably transfected CHO cells.

Tian Zheng-Wei ZW   Xu Dan-Hua DH   Wang Tian-Yun TY   Wang Xiao-Yin XY   Xu Hong-Yan HY   Zhao Chun-Peng CP   Xu Guang-Hua GH  

Journal of cellular and molecular medicine 20171027 2


Low-level and unstable transgene expression are common issues using the CHO cell expression system. Matrix attachment regions (MARs) enhance transgene expression levels, but additional research is needed to improve their function and to determine their mechanism of action. MAR-6 from CHO chromosomes actively mediates high and consistent gene expression. In this study, we compared the effects of two new MARs and MAR-6 on transgene expression in recombinant CHO cells and found one potent MAR eleme  ...[more]

Similar Datasets

| S-EPMC6825625 | biostudies-literature
| S-EPMC5923211 | biostudies-literature
2016-11-20 | GSE75521 | GEO
| S-EPMC7853477 | biostudies-literature
| S-EPMC4026526 | biostudies-literature
| S-EPMC6349195 | biostudies-literature
| S-EPMC5867124 | biostudies-literature
| S-EPMC3017767 | biostudies-literature
| S-EPMC5826766 | biostudies-literature
| S-EPMC2808413 | biostudies-literature