Unknown

Dataset Information

0

Endothelial deletion of Ino80 disrupts coronary angiogenesis and causes congenital heart disease.


ABSTRACT: During development, the formation of a mature, well-functioning heart requires transformation of the ventricular wall from a loose trabecular network into a dense compact myocardium at mid-gestation. Failure to compact is associated in humans with congenital diseases such as left ventricular non-compaction (LVNC). The mechanisms regulating myocardial compaction are however still poorly understood. Here, we show that deletion of the Ino80 chromatin remodeler in vascular endothelial cells prevents ventricular compaction in the developing mouse heart. This correlates with defective coronary vascularization, and specific deletion of Ino80 in the two major coronary progenitor tissues-sinus venosus and endocardium-causes intermediate phenotypes. In vitro, endothelial cells promote myocardial expansion independently of blood flow in an Ino80-dependent manner. Ino80 deletion increases the expression of E2F-activated genes and endothelial cell S-phase occupancy. Thus, Ino80 is essential for coronary angiogenesis and allows coronary vessels to support proper compaction of the heart wall.

SUBMITTER: Rhee S 

PROVIDER: S-EPMC5785521 | biostudies-literature | 2018 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications


During development, the formation of a mature, well-functioning heart requires transformation of the ventricular wall from a loose trabecular network into a dense compact myocardium at mid-gestation. Failure to compact is associated in humans with congenital diseases such as left ventricular non-compaction (LVNC). The mechanisms regulating myocardial compaction are however still poorly understood. Here, we show that deletion of the Ino80 chromatin remodeler in vascular endothelial cells prevents  ...[more]

Similar Datasets

| S-EPMC3871243 | biostudies-literature
| S-EPMC5647246 | biostudies-literature
| S-EPMC10212716 | biostudies-literature
2024-11-03 | GSE275951 | GEO
2024-11-03 | GSE275950 | GEO
2024-11-03 | GSE276222 | GEO
| S-EPMC5624824 | biostudies-other
2024-11-03 | GSE275849 | GEO
| S-EPMC4016996 | biostudies-literature
| S-EPMC10066379 | biostudies-literature