Unknown

Dataset Information

0

Altered Differentiation Potential of Gaucher's Disease iPSC Neuronal Progenitors due to Wnt/?-Catenin Downregulation.


ABSTRACT: Gaucher's disease (GD) is an autosomal recessive disorder caused by mutations in the GBA1 gene, which encodes acid ?-glucocerebrosidase (GCase). Severe GBA1 mutations cause neuropathology that manifests soon after birth, suggesting that GCase deficiency interferes with neuronal development. We found that neuronopathic GD induced pluripotent stem cell (iPSC)-derived neuronal progenitor cells (NPCs) exhibit developmental defects due to downregulation of canonical Wnt/?-catenin signaling and that GD iPSCs' ability to differentiate to dopaminergic (DA) neurons was strikingly reduced due to early loss of DA progenitors. Incubation of the mutant cells with the Wnt activator CHIR99021 (CHIR) or with recombinant GCase restored Wnt/?-catenin signaling and rescued DA differentiation. We also found that GD NPCs exhibit lysosomal dysfunction, which may be involved in Wnt downregulation by mutant GCase. We conclude that neuronopathic mutations in GCase lead to neurodevelopmental abnormalities due to a critical requirement of this enzyme for canonical Wnt/?-catenin signaling at early stages of neurogenesis.

SUBMITTER: Awad O 

PROVIDER: S-EPMC5785733 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Altered Differentiation Potential of Gaucher's Disease iPSC Neuronal Progenitors due to Wnt/β-Catenin Downregulation.

Awad Ola O   Panicker Leelamma M LM   Deranieh Rania M RM   Srikanth Manasa P MP   Brown Robert A RA   Voit Antanina A   Peesay Tejasvi T   Park Tea Soon TS   Zambidis Elias T ET   Feldman Ricardo A RA  

Stem cell reports 20171130 6


Gaucher's disease (GD) is an autosomal recessive disorder caused by mutations in the GBA1 gene, which encodes acid β-glucocerebrosidase (GCase). Severe GBA1 mutations cause neuropathology that manifests soon after birth, suggesting that GCase deficiency interferes with neuronal development. We found that neuronopathic GD induced pluripotent stem cell (iPSC)-derived neuronal progenitor cells (NPCs) exhibit developmental defects due to downregulation of canonical Wnt/β-catenin signaling and that G  ...[more]

Similar Datasets

| S-EPMC3040956 | biostudies-literature
| S-EPMC6826018 | biostudies-literature
| S-EPMC3903585 | biostudies-literature
| S-EPMC4940786 | biostudies-literature
| S-EPMC7251722 | biostudies-literature
| S-EPMC4299278 | biostudies-literature
| S-EPMC7518574 | biostudies-literature
| S-EPMC9006575 | biostudies-literature
| S-EPMC5665910 | biostudies-literature
| S-EPMC8712770 | biostudies-literature